948 resultados para transporter-encoding gene
Resumo:
The gene encoding the cAMP-responsive transcription factor CREB consists of multiple small exons some of which undergo alternative RNA splicing. We describe the finding of a novel transcript of the CREB gene expressed at high levels in the germ cells of the rat testis. The transcript contains an alternatively spliced exon inserted within the sequence encoding the transcriptional transactivation domain of CREB and this exon contains multiple in-frame stop codons. Furthermore, the exon is conserved in both rat and human genes (75% nucleotide identity). Although the function(s) of this RNA or the truncated CREB protein predicted to result from the translation of this unusual transcript is unknown, the high level of expression in the testicular germ cells and remarkable conservation of sequences in rat and human suggests that it may have a unique biological function in these cells.
Resumo:
Cancer-testis (CT) antigens comprise families of tumor-associated antigens that are immunogenic in patients with various cancers. Their restricted expression makes them attractive targets for immunotherapy. The aim of this study was to determine the expression of several CT genes and evaluate their prognostic value in head and neck squamous cell carcinoma (HNSCC). The pattern and level of expression of 12 CT genes (MAGE-A1, MAGE-A3, MAGE-A4, MAGE-A10, MAGE-C2, NY-ESO-1, LAGE-1, SSX-2, SSX-4, BAGE, GAGE-1/2, GAGE-3/4) and the tumor-associated antigen encoding genes PRAME, HERV-K-MEL, and NA-17A were evaluated by RT-PCR in a panel of 57 primary HNSCC. Over 80% of the tumors expressed at least 1 CT gene. Coexpression of three or more genes was detected in 59% of the patients. MAGE-A4 (60%), MAGE-A3 (51%), PRAME (49%) and HERV-K-MEL (42%) were the most frequently expressed genes. Overall, the pattern of expression of CT genes indicated a coordinate regulation; however there was no correlation between expression of MAGE-A3/A4 and BORIS, a gene whose product has been implicated in CT gene activation. The presence of MAGE-A and NY-ESO-1 proteins was verified by immunohistochemistry. Analysis of the correlation between mRNA expression of CT genes with clinico-pathological characteristics and clinical outcome revealed that patients with tumors positive for MAGE-A4 or multiple CT gene expression had a poorer overall survival. Furthermore, MAGE-A4 mRNA positivity was prognostic of poor outcome independent of clinical parameters. These findings indicate that expression of CT genes is associated with a more malignant phenotype and suggest their usefulness as prognostic markers in HNSCC.
Resumo:
BACKGROUND:HIV-1-infected patients vary considerably by their response to antiretroviral treatment, drug concentrations in plasma, toxic events, and rate of immune recovery. This variability could have a genetic basis. We did a pharmacogenetics study to analyse the association between response to antiretroviral treatment and allelic variants of several genes. METHODS:In 123 patients, we did PCR analyses of the gene for the multidrug-resistance transporter (MDR1), which codes for P-glycoprotein, of genes coding for isoenzymes of cytochrome P450, CYP3A4, CYP3A5, CYP2D6, and CYP2C19, and of the gene for the chemokine receptor CCR5. We measured concentrations in plasma of the antiretroviral agents efavirenz and nelfinavir by high-performance liquid-chromatography, and measured levels of P-glycoprotein expression, CD4-cell count, and HIV-1 viraemia. FINDINGS: Median drug concentrations in patients with the MDR1 3435 TT, CT, and CC genotypes were at the 30th, 50th, and 75th percentiles, respectively (p=0.0001). In patients with CYP2D6 extensive-metaboliser or poor-metaboliser alleles, median drug concentrations were at percentiles 45 and 62.5, respectively (p=0.04). Patients with the MDR1 TT genotype 6 months after starting treatment had a greater rise in CD4-cell count (257 cells/microL) than patients with the CT (165 cells/microL) and CC (121 cells/microL) genotype (p=0.0048), and the best recovery of naïve CD4-cells. INTERPRETATION:The polymorphism MDR1 3435 C/T predicts immune recovery after initiation of antiretroviral treatment. This finding suggests that P-glycoprotein has an important role in admittance of antiretroviral drugs to restricted compartments in vivo.
Resumo:
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder characterized by progressive degeneration of upper and lower motor neurons. It is mostly sporadic, but about 2% of cases are associated with mutations in the gene encoding the enzyme superoxide dismutase 1 (SOD1). A major constraint to the comprehension of the pathogenesis of ALS has been long represented by the conviction that this disorder selectively affects motor neurons in a cell-autonomous manner. However, the failure to identify the events underlying the neurodegenerative process and the increased knowledge of the complex cellular interactions necessary for the correct functioning of the CNS has recently focused the attention on the contribution to neurodegeneration of glial cells, including astrocytes. Astrocytes can hurt motor neurons directly by secreting neurotoxic factors, but they can also play a deleterious role indirectly by losing functions that are supportive for neurons. Recently, we reported that a subpopulation of astrocytes degenerates in the spinal cord of hSOD1G93A transgenic mouse model of ALS. Mechanistic studies in cultured astrocytes revealed that such effect is mediated by the excitatory amino acid glutamate.On the bsis of these observations, we next used the established cell culture model as a tool to screen the glioprotective effect of innovative drugs, namely cell-permeable therapeutics. These consist of peptidic effector moieties coupled to the selective intracellular peptide transporter TAT protein. We initially validated the usefulness of these molecules demonstrating that a control fluorescent peptide enters astrocytes in culture and is retained within the cells up to 24-48 h, according to the timing of our cytotoxicity experiments. We then tested the impact of specific intracellular peptides with antiapoptotic properties on glutamate-treated hSOD1G93A- expressing astrocytes and we identified one molecule that protects the cells from death. Chronic treatment of ALS mice with this peptide had a positive impact on the outcome of the disease.
Resumo:
OBJECTIVE: Familial cold urticaria (FCU) and Muckle-Wells syndrome (MWS) are dominantly inherited autoinflammatory disorders that cause rashes, fever, arthralgia, and in some subjects, AA amyloidosis, and have been mapped to chromosome 1q44. Sensorineural deafness in MWS, and provocation of symptoms by cold in FCU, are distinctive features. This study was undertaken to characterize the genetic basis of FCU, MWS, and an overlapping disorder in French Canadian, British, and Indian families, respectively. METHODS: Mutations in the candidate gene NALP3, which has also been named CIAS1 and PYPAF1, were sought in the study families, in a British/Spanish patient with apparent sporadic MWS, and in matched population controls. Identified variants were sought in 50 European subjects with uncharacterized, apparently sporadic periodic fever syndromes, 48 subjects with rheumatoid arthritis (RA), and 19 subjects with juvenile idiopathic arthritis (JIA). RESULTS: Point mutations, encoding putative protein variants R262W and L307P, were present in all affected members of the Indian and French Canadian families, respectively, but not in controls. The R262W variant was also present in the subject with sporadic MWS. The V200M variant was present in all affected members of the British family with MWS, in 2 of the 50 subjects with uncharacterized periodic fevers, and in 1 of 130 Caucasian and 2 of 48 Indian healthy controls. No mutations were identified among the subjects with RA or JIA. CONCLUSION: These findings confirm that mutations in the NALP3/CIAS1/PYPAF1 gene are associated with FCU and MWS, and that disease severity and clinical features may differ substantially within and between families. Analysis of this gene will improve classification of patients with inherited or apparently sporadic periodic fever syndromes.
Resumo:
We investigated the impact of GLUT2 gene inactivation on the regulation of hepatic glucose metabolism during the fed to fast transition. In control and GLUT2-null mice, fasting was accompanied by a approximately 10-fold increase in plasma glucagon to insulin ratio, a similar activation of liver glycogen phosphorylase and inhibition of glycogen synthase and the same elevation in phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNAs. In GLUT2-null mice, mobilization of glycogen stores was, however, strongly impaired. This was correlated with glucose-6-phosphate (G6P) levels, which remained at the fed values, indicating an important allosteric stimulation of glycogen synthase by G6P. These G6P levels were also accompanied by a paradoxical elevation of the mRNAs for L-pyruvate kinase. Re-expression of GLUT2 in liver corrected the abnormal regulation of glycogen and L-pyruvate kinase gene expression. Interestingly, GLUT2-null livers were hyperplasic, as revealed by a 40% increase in liver mass and 30% increase in liver DNA content. Together, these data indicate that in the absence of GLUT2, the G6P levels cannot decrease during a fasting period. This may be due to neosynthesized glucose entering the cytosol, being unable to diffuse into the extracellular space, and being phosphorylated back to G6P. Because hepatic glucose production is nevertheless quantitatively normal, glucose produced in the endoplasmic reticulum may also be exported out of the cell through an alternative, membrane traffic-based pathway, as previously reported (Guillam, M.-T., Burcelin, R., and Thorens, B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12317-12321). Therefore, in fasting, GLUT2 is not required for quantitative normal glucose output but is necessary to equilibrate cytosolic glucose with the extracellular space. In the absence of this equilibration, the control of hepatic glucose metabolism by G6P is dominant over that by plasma hormone concentrations.
Resumo:
Bacillus thuringiensis (Bt) subsp. medellin (Btmed) produces parasporal crystalline inclusions which are toxic to mosquito larvae. It has been shown that the inclusions of this bacterium contain mainly proteins of 94, 68 and 28-30 kDa. EcoRI partially digested total DNA of Btmed was cloned by using the Lambda Zap II cloning kit. Recombinant plaques were screened with a mouse policlonal antibody raised against the 94 kDa crystal protein of Btmed. One of the positive plaques was selected, and by in vivo excision, a recombinant pBluescript SK(-) was obtained. The gene encoding the 94 kDa toxin of Btmed DNA was cloned in a 4.4 kb DNA fragment. Btmed DNA was then subcloned as a EcoRI/EcoRI fragment into the shuttle vector pBU4 producing the recombinant plasmid pBTM3 and used to transform by electroporation Bt subsp. israelensis (Bti) crystal negative strain 4Q2-81. Toxicity to mosquito larvae was estimated by using first instar laboratory reared Aedes aegypti, and Culex quinquefasciatus larvae challenged with whole crystals. Toxicity results indicate that the purified inclusions from the recombinant Bti strain were toxic to all mosquito species tested, although the toxicity was not as high as the one produced by the crystal of the Btmed wild type strain. Poliacrylamide gel electrophoresis indicate that the inclusions produced by the recombinant strain Bti (pBTM3) were mainly composed of the 94 kDa protein of Btmed, as it was determined by Western blot
Resumo:
MCT2 is the predominant neuronal monocarboxylate transporter allowing lactate use as an alternative energy substrate. It is suggested that MCT2 is upregulated to meet enhanced energy demands after modifications in synaptic transmission. Brain-derived neurotrophic factor (BDNF), a promoter of synaptic plasticity, significantly increased MCT2 protein expression in cultured cortical neurons (as shown by immunocytochemistry and western blot) through a translational regulation at the synaptic level. Brain-derived neurotrophic factor can cause translational activation through different signaling pathways. Western blot analyses showed that p44/p42 mitogen-activated protein kinase (MAPK), Akt, and S6 were strongly phosphorylated on BDNF treatment. To determine by which signal transduction pathway(s) BDNF mediates its upregulation of MCT2 protein expression, the effect of specific inhibitors for p38 MAPK, phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK), p44/p42 MAPK (ERK), and Janus kinase 2 (JAK2) was evaluated. It could be observed that the BDNF-induced increase in MCT2 protein expression was almost completely blocked by all inhibitors, except for JAK2. These data indicate that BDNF induces an increase in neuronal MCT2 protein expression by a mechanism involving a concomitant stimulation of PI3K/Akt/mTOR/S6, p38 MAPK, and p44/p42 MAPK. Moreover, our observations suggest that changes in MCT2 expression could participate in the process of synaptic plasticity induced by BDNF.
Resumo:
ICEclc is a mobile genetic element found in two copies on the chromosome of the bacterium Pseudomonas knackmussii B13. ICEclc harbors genes encoding metabolic pathways for the degradation of chlorocatechols (CLC) and 2-aminophenol (2AP). At low frequencies, ICEclc excises from the chromosome, closes into a circular DNA molecule which can transfer to another bacterium via conjugation. Once in the recipient cell, ICEclc can reintegrate into the chromosome by site-specific recombination. This thesis aimed at identifying the regulatory network underlying the decisions for ICEclc horizontal transfer (HGT). The first chapter is an introduction on integrative and conjugative elements (ICEs) more in general, of which ICEclc is one example. In particular I emphasized the current knowledge of regulation and conjugation machineries of the different classes of ICE. In the second chapter, I describe a transcriptional analysis using microarrays and other experiments to understand expression of ICEclc in exponential and stationary phase. By overlaying transcriptomic profiles with Northern hybridizations and RT- PCR data, we established a transcription map for the entire core region of ICEclc, a region assumed to encode the ICE conjugation process. We also demonstrated how transcription of the ICEclc core is maximal in stationary phase, which correlates to expression of reporter genes fused to key ICEclc promoters. In the third chapter, I present a transcriptome analysis of ICEclc in a variety of different host species, in order to explore whether there are species-specific differences. In the fourth chapter, I focus on the role of a curious ICEclc-encoded TetR-type transcriptional repressor. We find that this gene, which we name mfsR, not only controls its own expression but that of a set of genes for a putative multi-drug efflux pump (mfsABC) as well. By using a combination of biochemical and molecular biology techniques, I could show that MfsR specifically binds to operator boxes in two ICEclc promoters (PmfsR and PmfsA), inhibiting the transcription of both the mfsR and mfsABC-orf38184 operons. Although we could not detect a clear phenotype of an mfsABC deletion, we discuss the implications of pump gene reorganizations in ICEclc and close relatives. In the fifth chapter, we find that mfsR not only controls its own expression and that of the mfsABC operon, but is also indirectly controlling ICEclc transfer. Using gene deletions, microarrays, transfer assays and microscopy-based reporter fusions, we demonstrate that mfsR actually controls a small operon of three regulatory genes. The last gene of this mfsR operon, orf17162, encodes a LysR-type activator that when deleted strongly impairs ICEclc transfer. Interestingly, deletion of mfsR leads to transfer competence in almost all cells, thereby overruling the bistability process in the wild-type. In the final sixth chapter, I discuss the relevance of the present thesis and the resulting perspectives for future studies.
Resumo:
This paper describes the development of an analytical technique for arsenic analyses that is based on genetically-modified bioreporter bacteria bearing a gene encoding for the production of a green fluorescent protein (gfp). Upon exposure to arsenic (in the aqueous form of arsenite), the bioreporter production of the fluorescent reporter molecule is monitored spectroscopically. We compared the response measured as a function of time and concentration by steady-state fluorimetry (SSF) to that measured by epi-fluorescent microscopy (EFM). SSF is a bulk technique; as such it inherently yields less information, whereas EFM monitors the response of many individual cells simultaneously and data can be processed in terms of population averages or subpopulations. For the bioreporter strain used here, as well as for the literature we cite, the two techniques exhibit similar performance characteristics. The results presented here show that the EFM technique can compete with SSF and shows substantially more promise for future improvement; it is a matter of research interest to develop optimized methods of EFM image analysis and statistical data treatment. EFM is a conduit for understanding the dynamics of individual cell response vs. population response, which is not only a matter of research interest, but is also promising in the practical terms of developing micro-scale analysis.
Resumo:
Whole genome sequences of microbial pathogens present new opportunities for clinical application. Presently, genome sequencing of the human protozoan parasite Leishmania major is in progress. The driving forces behind the genome project are to identify genes with key cellular functions and new drug targets, to increase knowledge on mechanisms of drug resistance and to favor technology transfer to scientists from endemic countries. Sequencing of the genome is also aimed at the identification of genes that are expressed in the infectious stages of the parasite and in particular in the intracellular form of the parasite. Several protective antigens of Leishmania have been identified. In addition to these antigens, lysosomal cysteine proteinases (CPs) have been characterized in different strains of Leishmania and Trypanosoma, as new target molecules. Recently, we have isolated and characterized Type I (CPB) and Type II (CPA) cysteine proteinase encoding genes from L. major. The exact function of cysteine proteinases of Leishmania is not completely understood, although there are a few reports describing their role as virulence factors. One specific feature of CPB in Leishmania and other trypanosomatids, is the presence of a Cterminal extension (CTE) which is possibly indicative of conserved structure and function. Recently, we demonstrated that DNA immunization of genetically susceptible BALB / c mice, using a cocktail of CPB and CPA genes, induced long lasting protection against L. major infection. This review intends to give an overview of the current knowledge on genetic vaccination used against leishmaniasis and the importance of CP genes for such an approach.
Resumo:
The permeability-glycoprotein efflux-transporter encoded by the multidrug resistance 1 (ABCB1) gene and the cytochromes P450 3A4/5 encoded by the CYP3A4/5 genes are known to interact in the transport and metabolism of many drugs. Recent data have shown that the CYP3A5 genotypes influence blood pressure and that permeability-glycoprotein activity might influence the activity of the renin-angiotensin system. Hence, these 2 genes may contribute to blood pressure regulation in humans. We analyzed the association of variants of the ABCB1 and CYP3A5 genes with ambulatory blood pressure, plasma renin activity, plasma aldosterone, endogenous lithium clearance, and blood pressure response to treatment in 72 families (373 individuals; 55% women; mean age: 46 years) of East African descent. The ABCB1 and CYP3A5 genes interact with urinary sodium excretion in their effect on ambulatory blood pressure (daytime systolic: P=0.05; nighttime systolic and diastolic: P<0.01), suggesting a gene-gene-environment interaction. The combined action of these genes is also associated with postproximal tubular sodium reabsorption, plasma renin activity, plasma aldosterone, and with an altered blood pressure response to the angiotensin-converting enzyme inhibitor lisinopril (P<0.05). This is the first reported association of the ABCB1 gene with blood pressure in humans and demonstration that genes encoding for proteins metabolizing and transporting drugs and endogenous substrates contribute to blood pressure regulation.
Resumo:
PURPOSE: The purpose of this work was to study the influence of cell differentiation on the mRNA expression of transporters and channels in Caco-2 cells and to assess Caco-2 cells as a model for carrier-mediated drug transport in the intestines. METHOD: Gene mRNA expression was measured using a custom-designed microarray chip with 750 deoxyoligonucleotide probes (70mers). Each oligomer was printed four times on poly-lysine-coated glass slides. Expression profiles were expressed as ratio values between fluorescence intensities of Cy3 and Cy5 dye-labeled cDNA derived from poly(A) + RNA samples of Caco-2 cells and total RNA of human intestines. RESULTS: Significant differences in the mRNA expression profile of transporters and channels were observed upon differentiation of Caco-2 cells from 5 days to 2 weeks in culture, including changes for MAT8, S-protein, and Nramp2. Comparing Caco-2 cells of different passage number revealed few changes in mRNAs except for GLUT3, which was down-regulated 2.4-fold within 13 passage numbers. Caco-2 cells had a similar expression profile when either cultured in flasks or on filters but differed more strongly from human small and large intestine, regardless of the differentiation state of Caco-2 cells. Expression of several genes highly transcribed in small or large intestines differed fourfold or more in Caco-2 cells. CONCLUSIONS: Although Caco-2 cells have proven a suitable model for studying carrier-mediated transport in human intestines, the expression of specific transporter and ion channel genes may differ substantially.
Resumo:
AIMS: A high-fructose diet (HFrD) may play a role in the obesity and metabolic disorders epidemic. In rodents, HFrD leads to insulin resistance and ectopic lipid deposition. In healthy humans, a four-week HFrD alters lipid homoeostasis, but does not affect insulin sensitivity or intramyocellular lipids (IMCL). The aim of this study was to investigate whether fructose may induce early molecular changes in skeletal muscle prior to the development of whole-body insulin resistance. METHODS: Muscle biopsies were taken from five healthy men who had participated in a previous four-week HFrD study, during which insulin sensitivity (hyperinsulinaemic euglycaemic clamp), and intrahepatocellular lipids and IMCL were assessed before and after HFrD. The mRNA concentrations of 16 genes involved in lipid and carbohydrate metabolism were quantified before and after HFrD by real-time quantitative PCR. RESULTS: HFrD significantly (P<0.05) increased stearoyl-CoA desaturase-1 (SCD-1) (+50%). Glucose transporter-4 (GLUT-4) decreased by 27% and acetyl-CoA carboxylase-2 decreased by 48%. A trend toward decreased peroxisomal proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) was observed (-26%, P=0.06). All other genes showed no significant changes. CONCLUSION: HFrD led to alterations of SCD-1, GLUT-4 and PGC-1alpha, which may be early markers of insulin resistance.
Resumo:
Glucose transporter-1 deficiency syndrome is caused by mutations in the SLC2A1 gene in the majority of patients and results in impaired glucose transport into the brain. From 2004-2008, 132 requests for mutational analysis of the SLC2A1 gene were studied by automated Sanger sequencing and multiplex ligation-dependent probe amplification. Mutations in the SLC2A1 gene were detected in 54 patients (41%) and subsequently in three clinically affected family members. In these 57 patients we identified 49 different mutations, including six multiple exon deletions, six known mutations and 37 novel mutations (13 missense, five nonsense, 13 frame shift, four splice site and two translation initiation mutations). Clinical data were retrospectively collected from referring physicians by means of a questionnaire. Three different phenotypes were recognized: (i) the classical phenotype (84%), subdivided into early-onset (<2 years) (65%) and late-onset (18%); (ii) a non-classical phenotype, with mental retardation and movement disorder, without epilepsy (15%); and (iii) one adult case of glucose transporter-1 deficiency syndrome with minimal symptoms. Recognizing glucose transporter-1 deficiency syndrome is important, since a ketogenic diet was effective in most of the patients with epilepsy (86%) and also reduced movement disorders in 48% of the patients with a classical phenotype and 71% of the patients with a non-classical phenotype. The average delay in diagnosing classical glucose transporter-1 deficiency syndrome was 6.6 years (range 1 month-16 years). Cerebrospinal fluid glucose was below 2.5 mmol/l (range 0.9-2.4 mmol/l) in all patients and cerebrospinal fluid : blood glucose ratio was below 0.50 in all but one patient (range 0.19-0.52). Cerebrospinal fluid lactate was low to normal in all patients. Our relatively large series of 57 patients with glucose transporter-1 deficiency syndrome allowed us to identify correlations between genotype, phenotype and biochemical data. Type of mutation was related to the severity of mental retardation and the presence of complex movement disorders. Cerebrospinal fluid : blood glucose ratio was related to type of mutation and phenotype. In conclusion, a substantial number of the patients with glucose transporter-1 deficiency syndrome do not have epilepsy. Our study demonstrates that a lumbar puncture provides the diagnostic clue to glucose transporter-1 deficiency syndrome and can thereby dramatically reduce diagnostic delay to allow early start of the ketogenic diet.