932 resultados para temporal lip information
Resumo:
Geospatio-temporal conceptual models provide a mechanism to explicitly represent geospatial and temporal aspects of applications. Such models, which focus on both what and when/where, need to be more expressive than conventional conceptual models (e.g., the ER model), which primarily focus on what is important for a given application. In this study, we view conceptual schema comprehension of geospatio-temporal data semantics in terms of matching the external problem representation (that is, the conceptual schema) to the problem-solving task (that is, syntactic and semantic comprehension tasks), an argument based on the theory of cognitive fit. Our theory suggests that an external problem representation that matches the problem solver's internal task representation will enhance performance, for example, in comprehending such schemas. To assess performance on geospatio-temporal schema comprehension tasks, we conducted a laboratory experiment using two semantically identical conceptual schemas, one of which mapped closely to the internal task representation while the other did not. As expected, we found that the geospatio-temporal conceptual schema that corresponded to the internal representation of the task enhanced the accuracy of schema comprehension; comprehension time was equivalent for both. Cognitive fit between the internal representation of the task and conceptual schemas with geospatio-temporal annotations was, therefore, manifested in accuracy of schema comprehension and not in time for problem solution. Our findings suggest that the annotated schemas facilitate understanding of data semantics represented on the schema.
Resumo:
The authors use experimental surveys to investigate the association between individuals' knowledge of particular wildlife species and their stated willingness to allocate funds to conserve each. The nature of variations in these allocations between species (e.g., their dispersion) as participants' knowledge increases is examined. Factors influencing these changes are suggested. Willingness-to-pay allocations are found not to measure the economic value of species, but are shown to be policy relevant. The results indicate that poorly known species, e.g., in remote areas, may obtain relatively less conservation support than they deserve. (JEL Q51, Q57, Q58)
Resumo:
Pattern discovery in a long temporal event sequence is of great importance in many application domains. Most of the previous work focuses on identifying positive associations among time stamped event types. In this paper, we introduce the problem of defining and discovering negative associations that, as positive rules, may also serve as a source of knowledge discovery. In general, an event-oriented pattern is a pattern that associates with a selected type of event, called a target event. As a counter-part of previous research, we identify patterns that have a negative relationship with the target events. A set of criteria is defined to evaluate the interestingness of patterns associated with such negative relationships. In the process of counting the frequency of a pattern, we propose a new approach, called unique minimal occurrence, which guarantees that the Apriori property holds for all patterns in a long sequence. Based on the interestingness measures, algorithms are proposed to discover potentially interesting patterns for this negative rule problem. Finally, the experiment is made for a real application.
Resumo:
A major task of traditional temporal event sequence mining is to predict the occurrences of a special type of event (called target event) in a long temporal sequence. Our previous work has defined a new type of pattern, called event-oriented pattern, which can potentially predict the target event within a certain period of time. However, in the event-oriented pattern discovery, because the size of interval for prediction is pre-defined, the mining results could be inaccurate and carry misleading information. In this paper, we introduce a new concept, called temporal feature, to rectify this shortcoming. Generally, for any event-oriented pattern discovered under the pre-given size of interval, the temporal feature is the minimal size of interval that makes the pattern interesting. Thus, by further investigating the temporal features of discovered event-oriented patterns, we can refine the knowledge for the target event prediction.
Resumo:
A major task of traditional temporal event sequence mining is to find all frequent event patterns from a long temporal sequence. In many real applications, however, events are often grouped into different types, and not all types are of equal importance. In this paper, we consider the problem of efficient mining of temporal event sequences which lead to an instance of a specific type of event. Temporal constraints are used to ensure sensibility of the mining results. We will first generalise and formalise the problem of event-oriented temporal sequence data mining. After discussing some unique issues in this new problem, we give a set of criteria, which are adapted from traditional data mining techniques, to measure the quality of patterns to be discovered. Finally we present an algorithm to discover potentially interesting patterns.
Resumo:
Pattern discovery in temporal event sequences is of great importance in many application domains, such as telecommunication network fault analysis. In reality, not every type of event has an accurate timestamp. Some of them, defined as inaccurate events may only have an interval as possible time of occurrence. The existence of inaccurate events may cause uncertainty in event ordering. The traditional support model cannot deal with this uncertainty, which would cause some interesting patterns to be missing. A new concept, precise support, is introduced to evaluate the probability of a pattern contained in a sequence. Based on this new metric, we define the uncertainty model and present an algorithm to discover interesting patterns in the sequence database that has one type of inaccurate event. In our model, the number of types of inaccurate events can be extended to k readily, however, at a cost of increasing computational complexity.
Resumo:
Gamma activity to stationary grating stimuli was studied non-invasively using MEG recordings in humans. Using a spatial filtering technique, we localized gamma activity to primary visual cortex. We tested the hypothesis that spatial frequency properties of visual stimuli may be related to the temporal frequency characteristics of the associated cortical responses. We devised a method to assess temporal frequency differences between stimulus-related responses that typically exhibit complex spectral shapes. We applied this methodology to either single-trial (induced) or time-averaged (evoked) responses in four frequency ranges (0-40, 20-60, 40-80 and 60-100 Hz) and two time windows (either the entire duration of stimulus presentation or the first second following stimulus onset). Our results suggest that stimuli of varying spatial frequency induce responses that exhibit significantly different temporal frequency characteristics. These effects were particularly accentuated for induced responses in the classical gamma frequency band (20-60 Hz) analyzed over the entire duration of stimulus presentation. Strikingly, examining the first second of the responses following stimulus onset resulted in significant loss in stimulus specificity, suggesting that late signal components contain functionally relevant information. These findings advocate a functional role of gamma activity in sensory representation. We suggest that stimulus specific frequency characteristics of MEG signals can be mapped to processes of neuronal synchronization within the framework of coupled dynamical systems.
Resumo:
The 'moving targets' algorithm for training recurrent networks is reviewed and applied to a task which demonstrates the ability of this algorithm to use distant contextual information. Some practical difficulties are discussed, especially with regard to the minimization process. Results on performance and computational requirements of several different 2nd-order minimization algorithms are presented for moving target problems.
Resumo:
Computer simulated trajectories of bulk water molecules form complex spatiotemporal structures at the picosecond time scale. This intrinsic complexity, which underlies the formation of molecular structures at longer time scales, has been quantified using a measure of statistical complexity. The method estimates the information contained in the molecular trajectory by detecting and quantifying temporal patterns present in the simulated data (velocity time series). Two types of temporal patterns are found. The first, defined by the short-time correlations corresponding to the velocity autocorrelation decay times (â‰0.1â€ps), remains asymptotically stable for time intervals longer than several tens of nanoseconds. The second is caused by previously unknown longer-time correlations (found at longer than the nanoseconds time scales) leading to a value of statistical complexity that slowly increases with time. A direct measure based on the notion of statistical complexity that describes how the trajectory explores the phase space and independent from the particular molecular signal used as the observed time series is introduced. © 2008 The American Physical Society.
Resumo:
Frith has argued that people with autism show “weak central coherence,” an unusual bias toward piecemeal rather than configurational processing and a reduction in the normal tendency to process information in context. However, the precise cognitive and neurological mechanisms underlying weak central coherence are still unknown. We propose the hypothesis that the features of autism associated with weak central coherence result from a reduction in the integration of specialized local neural networks in the brain caused by a deficit in temporal binding. The visuoperceptual anomalies associated with weak central coherence may be attributed to a reduction in synchronization of high-frequency gamma activity between local networks processing local features. The failure to utilize context in language processing in autism can be explained in similar terms. Temporal binding deficits could also contribute to executive dysfunction in autism and to some of the deficits in socialization and communication.
Resumo:
Noise-vocoded (NV) speech is often regarded as conveying phonetic information primarily through temporal-envelope cues rather than spectral cues. However, listeners may infer the formant frequencies in the vocal-tract output—a key source of phonetic detail—from across-band differences in amplitude when speech is processed through a small number of channels. The potential utility of this spectral information was assessed for NV speech created by filtering sentences into six frequency bands, and using the amplitude envelope of each band (=30 Hz) to modulate a matched noise-band carrier (N). Bands were paired, corresponding to F1 (˜N1 + N2), F2 (˜N3 + N4) and the higher formants (F3' ˜ N5 + N6), such that the frequency contour of each formant was implied by variations in relative amplitude between bands within the corresponding pair. Three-formant analogues (F0 = 150 Hz) of the NV stimuli were synthesized using frame-by-frame reconstruction of the frequency and amplitude of each formant. These analogues were less intelligible than the NV stimuli or analogues created using contours extracted from spectrograms of the original sentences, but more intelligible than when the frequency contours were replaced with constant (mean) values. Across-band comparisons of amplitude envelopes in NV speech can provide phonetically important information about the frequency contours of the underlying formants.
Resumo:
This thesis begins by providing a review of techniques for interpreting the thermal response at the earth's surface acquired using remote sensing technology. Historic limitations in the precision with which imagery acquired from airborne platforms can be geometrically corrected and co-registered has meant that relatively little work has been carried out examining the diurnal variation of surface temperature over wide regions. Although emerging remote sensing systems provide the potential to register temporal image data within satisfactory levels of accuracy, this technology is still not widely available and does not address the issue of historic data sets which cannot be rectified using conventional parametric approaches. In overcoming these problems, the second part of this thesis describes the development of an alternative approach for rectifying airborne line-scanned imagery. The underlying assumption that scan lines within the imagery are straight greatly reduces the number of ground control points required to describe the image geometry. Furthermore, the use of pattern matching procedures to identify geometric disparities between raw line-scanned imagery and corresponding aerial photography enables the correction procedure to be almost fully automated. By reconstructing the raw image data on a truly line-by-line basis, it is possible to register the airborne line-scanned imagery to the aerial photography with an average accuracy of better than one pixel. Providing corresponding aerial photography is available, this approach can be applied in the absence of platform altitude information allowing multi-temporal data sets to be corrected and registered.
Resumo:
This Thesis addresses the problem of automated false-positive free detection of epileptic events by the fusion of information extracted from simultaneously recorded electro-encephalographic (EEG) and the electrocardiographic (ECG) time-series. The approach relies on a biomedical case for the coupling of the Brain and Heart systems through the central autonomic network during temporal lobe epileptic events: neurovegetative manifestations associated with temporal lobe epileptic events consist of alterations to the cardiac rhythm. From a neurophysiological perspective, epileptic episodes are characterised by a loss of complexity of the state of the brain. The description of arrhythmias, from a probabilistic perspective, observed during temporal lobe epileptic events and the description of the complexity of the state of the brain, from an information theory perspective, are integrated in a fusion-of-information framework towards temporal lobe epileptic seizure detection. The main contributions of the Thesis include the introduction of a biomedical case for the coupling of the Brain and Heart systems during temporal lobe epileptic seizures, partially reported in the clinical literature; the investigation of measures for the characterisation of ictal events from the EEG time series towards their integration in a fusion-of-knowledge framework; the probabilistic description of arrhythmias observed during temporal lobe epileptic events towards their integration in a fusion-of-knowledge framework; and the investigation of the different levels of the fusion-of-information architecture at which to perform the combination of information extracted from the EEG and ECG time-series. The performance of the method designed in the Thesis for the false-positive free automated detection of epileptic events achieved a false-positives rate of zero on the dataset of long-term recordings used in the Thesis.
Resumo:
Spoken language comprehension is known to involve a large left-dominant network of fronto-temporal brain regions, but there is still little consensus about how the syntactic and semantic aspects of language are processed within this network. In an fMRI study, volunteers heard spoken sentences that contained either syntactic or semantic ambiguities as well as carefully matched low-ambiguity sentences. Results showed ambiguity-related responses in the posterior left inferior frontal gyrus (pLIFG) and posterior left middle temporal regions. The pLIFG activations were present for both syntactic and semantic ambiguities suggesting that this region is not specialised for processing either semantic or syntactic information, but instead performs cognitive operations that are required to resolve different types of ambiguity irrespective of their linguistic nature, for example by selecting between possible interpretations or reinterpreting misparsed sentences. Syntactic ambiguities also produced activation in the posterior middle temporal gyrus. These data confirm the functional relationship between these two brain regions and their importance in constructing grammatical representations of spoken language.
Resumo:
Three studies tested the impact of properties of behavioral intention on intention-behavior consistency, information processing, and resistance. Principal components analysis showed that properties of intention formed distinct factors. Study 1 demonstrated that temporal stability, but not the other intention attributes, moderated intention-behavior consistency. Study 2 found that greater stability of intention was associated with improved memory performance. In Study 3, participants were confronted with a rating scale manipulation designed to alter their intention scores. Findings showed that stable intentions were able to withstand attack. Overall, the present research findings suggest that different properties of intention are not simply manifestations of a single underlying construct ("intention strength"), and that temporal stability exhibits superior resistance and impact compared to other intention attributes. © 2013 Wiley Periodicals, Inc.