810 resultados para technology acceptance model
Resumo:
The objective of the current research is to investigate brand value generation. The study is conducted in the context of high-technology companies. The research aims at finding the impact of long-term brand development strategies, including advertising investments, R&D investments, R&D intensity, new products developed and design. The empirical part of the study incorporated collection of primary and secondary data on 36 companies operating in high-technology sector and being rated as top companies with the most valuable brands by Interbrand consultancy. The data contained information for six consequent years from 2008 to 2013. Obtained data was analyzed using the methods of fixed effect and random effect model (panel data analysis). The analysis showed positive effect of advertising and R&D investments on brand value of high-technology companies in the long run. The impact of remaining three strategies was not approved and further investigation is required.
Resumo:
Retaining players and re-attracting switching players has long been a central topic for SNG providers with regard to the post-adoption stage of playing an online game. However, there has not been much research which has explored players’ post-adoption behavior by incorporating the continuance intention and the switching intention. In addition, traditional IS continuance theories were mainly developed to investigate users’ continued use of utilitarian IS, and thus they may fall short when trying to explain the continued use of hedonic IS. Furthermore, compared to the richer literature on IS continuance, far too little attention has been paid to IS switching, leading to a dearth of knowledge on the subject, despite the increased incidence of the switching phenomenon in the IS field. By addressing the limitations of prior literature, this study seeks to examine the determinants of SNG players’ two different post-adoption behaviors, including the continuance intention and the switching intention. This study takes a positivist approach and uses survey research method to test five proposed research models based on Unified Theory of Acceptance and Use of Technology 2; Use and Gratification Theory; Push-Pull-Mooring model; Cognitive Dissonance Theory; and a self-developed model respectively with empirical data collected from the SNG players of one of the biggest SNG providers in China. A total of 3919 valid responses and 541 valid responses were used to examine the continuance intention and the switching intention, respectively. SEM is utilized as the data analysis method. The proposed research models are supported by the empirical data. The continuance intention is determined by enjoyment, fantasy, escapism, social interaction, social presence, social influence, achievement and habit. The switching intention is determined by enjoyment, satisfaction, subjective norms, descriptive norms, alternative attractiveness, the need for variety, change experience, and adaptation cost. This study contributes to IS theories in three important ways. Firstly, it shows IS switching should be included in IS post-adoption research together with IS continuance. Secondly, a modern IS is usually multi-functional and SNG players have multiple reasons for using a SNG, thus a player’s beliefs about the hedonic, social and utilitarian perceptions of their continued use of the SNG exert significant effects on the continuance intention. Thirdly, the determinants of the switch ing intention mainly exert push, pull, and mooring effects. Players’ beliefs about their current SNG and the available alternatives, as well as their individual characteristics are all significant determinants of the switching intention. SNG players combine these effects in order to formulate the switching intention. Finally, this study presents limitations and suggestions for future research.
Resumo:
Rolling element bearings are essential components of rotating machinery. The spherical roller bearing (SRB) is one variant seeing increasing use, because it is self-aligning and can support high loads. It is becoming increasingly important to understand how the SRB responds dynamically under a variety of conditions. This doctoral dissertation introduces a computationally efficient, three-degree-of-freedom, SRB model that was developed to predict the transient dynamic behaviors of a rotor-SRB system. In the model, bearing forces and deflections were calculated as a function of contact deformation and bearing geometry parameters according to nonlinear Hertzian contact theory. The results reveal how some of the more important parameters; such as diametral clearance, the number of rollers, and osculation number; influence ultimate bearing performance. Distributed defects, such as the waviness of the inner and outer ring, and localized defects, such as inner and outer ring defects, are taken into consideration in the proposed model. Simulation results were verified with results obtained by applying the formula for the spherical roller bearing radial deflection and the commercial bearing analysis software. Following model verification, a numerical simulation was carried out successfully for a full rotor-bearing system to demonstrate the application of this newly developed SRB model in a typical real world analysis. Accuracy of the model was verified by comparing measured to predicted behaviors for equivalent systems.
Resumo:
Waste incineration is becoming increasingly widespread method of waste disposal in China. Incineration plants mostly use grate and circular fluidized bed (CFB) technology. Waste combustion in cement production is also beginning to gradually increase. However, Chinese waste composition is causing problems for the energy utilization. Mechanical waste pre-treatment optimizes the combustion process and facilitates the energy recovery. The objective of this study is to identify how Western waste pre-treatment manufacturer could operate in Chinese markets. Chinese waste management industry is reviewed via PESTEL analysis. The current state and future predictions of grate and CFB incineration as well as cement manufacturing are monitored. Grate combustion, which requires lesser waste pre-treatment, is becoming more common at the expense of CFB incineration in China. The most promising future for waste treatment is in cement production industry. Waste treatment equipment manufacturer should try to create pilot projects with biggest cement producers with a view of growing co-operation in the future.
Resumo:
Concentrated solar power (CSP) is a renewable energy technology, which could contribute to overcoming global problems related to pollution emissions and increasing energy demand. CSP utilizes solar irradiation, which is a variable source of energy. In order to utilize CSP technology in energy production and reliably operate a solar field including thermal energy storage system, dynamic simulation tools are needed in order to study the dynamics of the solar field, to optimize production and develop control systems. The object of this Master’s Thesis is to compare different concentrated solar power technologies and configure a dynamic solar field model of one selected CSP field design in the dynamic simulation program Apros, owned by VTT and Fortum. The configured model is based on German Novatec Solar’s linear Fresnel reflector design. Solar collector components including dimensions and performance calculation were developed, as well as a simple solar field control system. The preliminary simulation results of two simulation cases under clear sky conditions were good; the desired and stable superheated steam conditions were maintained in both cases, while, as expected, the amount of steam produced was reduced in the case having lower irradiation conditions. As a result of the model development process, it can be concluded, that the configured model is working successfully and that Apros is a very capable and flexible tool for configuring new solar field models and control systems and simulating solar field dynamic behaviour.
Resumo:
This thesis studied the performance of Advanced metering infrastructure systems in a challenging Demand Response environment. The aim was to find out what kind of challenges and bottlenecks could be met when utilizing AMI-systems in challenging Demand Response tasks. To find out the challenges and bottlenecks, a multilayered demand response service concept was formed. The service consists of seven different market layers which consist of Nordic electricity market and the reserve markets of Fingrid. In the simulations the AMI-systems were benchmarked against these seven market layers. It was found out, that the current generation AMI-systems were capable of delivering Demand Response on the most challenging market layers, when observed from time critical viewpoint. Additionally, it was found out, that to enable wide scale Demand Response there are three major challenges to be acknowledged. The challenges hindering the utilization of wide scale Demand Response were related to poor standardization of the systems in use, possible problems in data connectivity solutions and the current electricity market regulation model.
Resumo:
Sensory analysis was used to get an overall flavour description of a reaction mixtures containing 5'-IMP and Cysteine. Ribose/cysteine systems were used as reference systems. Results from triangle and aroma profiling show a clear correlation between the terms used and the volatile analysis described in literature for these model systems. For instance reactions at pH 3.0 and 4.5 for 5'-IMP/cysteine systems, which were described as "meaty" and "boiled meat" by panellists, presented, in the literature, the higher number of "meaty" compounds in volatile analysis (1, 7, 8, 20) .
Resumo:
Anthocyanins are the pigments responsible for the color of most red grapes and are easily degraded following various reaction mechanisms affected by oxygen, enzymes, pH, and temperature among other variables. In this study, a jam model system was developed using Merlot and Bordô grape extracts and polysaccharides (xanthan and locust bean gums) and different temperatures (45, 55 and 65 °C). The stability of the anthocyanin pigments and the rheological behavior of the jam model system were studied. For the determination of the stability, the half-life time and first-order reaction rate constants for the anthocyanin pigments were calculated. The rheological behavior was determined through the Power law model. The jam model system produced using a temperature of 45 °C showed the best results for the anthocyanin half-life time. The first-order reaction rate constants for the 45, 55, and 65 °C treatments were not significantly different among each other (p > 0.05). It was observed that with an increase in the jam model system temperature there was an increase in the index of consistency.
Resumo:
A comparative analysis of the theoretical-experimental study, developed by Hsu on the hydration of Amsoy 71 soybean grain, was performed through several soaking experiments using CD 202 soybean at 10, 20, 30, 40, and 50 °C, measuring moisture content over time. The results showed that CD 202 soybean equilibrium moisture content, Xeq, does not depend on temperature and is 21% higher than that found by Hsu, suggesting that soybean cultivar exerts great influence on Xeq. The Hsu model was numerically solved and its parameters were adjusted by the least squares method, with maximum deviations of +/- 10% relative to the experimental values. The limiting step in the mass transfer process during hydration corresponds to water diffusion inside the grain, leading to radial moisture gradients that decrease over time and with an increase in temperature. Regardless of the soybean cultivar, diffusivity increases as temperature or moisture content increases. However, the values of this transport property for Amsoy 71 were superior to those of CD 202, very close at the beginning of hydration at 20 °C and almost three times higher at the end of hydration at 50 °C.
Resumo:
In this work, the effects of thermoplastic extrusion process parameters (raw material moisture content and temperature) and the addition of functional ingredients (lycopene and soy protein) on quality characteristics of a base-formulation for extruded corn snacks were studied, with the objective of developing an easy-to-eat functional product. A single-screw Labor PQ 30 model Inbramaq extruder was used for extrusion and a central composite rotational design (CCRD) was followed. The independent variables were: i) percentage of soy protein isolate (0-30%); ii) percentage of lycopene preparation (0-0.1%); iii) raw material moisture content (20-30%); and iv) 5th zone temperature (100-150 °C). The expansion index reached maximum values with the lowest raw material moisture content (20%) and intermediate temperatures (approximately 125 °C). Instrumental hardness was higher with high moisture and low temperature; however, increasing the percentage of soy protein was beneficial for the texture of the product, reducing hardness. The red color intensity increased with the increase in lycopene content and moisture, and with the reduction of temperature. Sensory acceptance tests were carried out for two products, with maximum percentages of the functional ingredients, 20% moisture and temperatures of 125 and 137 °C, with greater acceptance for the product extruded at 125 °C.
Resumo:
Reverse osmosis has been used for the concentration of fruit juices with promising considering the quality of the obtained products. The objective of this study was to concentrate single strength pineapple juice by reverse osmosis. The concentration was carried out with polyamide composite membranes in a 0.65 m² plate and frame module at 60 bar transmembrane pressure at 20 °C. The permeate flux was 17 L.hm-2. The total soluble solid content of the juice increased from 11 to 31 °Brix corresponding to a Volumetric Concentration Factor (VCF) of 2.9. The concentration of soluble solids, total solids, and total acidity increased proportionally to FCV. The concentrated juice and three commercial concentrated pineapple juices were evaluated regarding preference and purchase intention by 79 pineapple juice consumers. The concentrated juice by reverse osmosis was the preferred among consumers. It can be concluded that this process may be considered an alternative to the pre-concentration of fruit juices.
Resumo:
The sensory characteristics color and flavor of food play an important role not only in the selection, but also in the determination of consumption, satiation, and ingestion. With the objective to determine and evaluate the influence of color on the acceptance and identification of flavor of foods for adults, sensory analysis was performed on jellies by non-trained tasters of both sexes aged between 18 and 60 years (1750 tests). A hedonic scale and combinations of five colors (red, yellow, green, blue and purple) and three flavors (strawberry, pineapple, and limes) were used in the acceptance test totaling 15 samples. In the duo-trio discrimination test, together with the reference sample (R), one sample identical to the reference and another of identical color and different flavor were offered, and the judges were requested to identify the sample that was different from the reference sample. The colors used did not influence the acceptance of the samples (P > 0.05), and as there was not significant interaction between color and flavor. However, the limes flavor negatively influenced acceptance when compared to the other flavors. With regard to flavor differentiation, the colors used did not influence flavor identification (P > 0.05); However, differentiated behavior was identified between females and males, and the latter were more error-prone. Therefore, under the experimental conditions tested, color did not influence the acceptance and identification of the flavor of the samples by adults.
Resumo:
The objective of this study was to evaluate the effect of the addition of oatmeal and palm fat in the elaboration of biscuits with added L-leucine and calcium in order to develop a product for sarcopenia in the elderly. The biscuits, or cookies, were elaborated applying a central composite rotational design with surface response methodology, and the significant linear, quadratic and interaction terms were used in the second order mathematical model. Physical, physicochemical and sensory analyses were performed by a trained panel. Based on the best results obtained, three cookie formulations were selected for sensory evaluation by the target group and physicochemical determinations. The formulations with the highest sensory scores for appearance and texture and medium scores for color and expansion index were selected. The addition of calcium and leucine increased significantly the concentration of these components in the biscuits elaborated resulting in a cookie with more than 30% of DRI (Dietary Reference Intake) for calcium and leucine. The formulations selected showed high acceptance by the target group; therefore, they can be included in the diet of elderly with sarcopenia as a functional food.
Resumo:
In this study, the effects of hot-air drying conditions on color, water holding capacity, and total phenolic content of dried apple were investigated using artificial neural network as an intelligent modeling system. After that, a genetic algorithm was used to optimize the drying conditions. Apples were dried at different temperatures (40, 60, and 80 °C) and at three air flow-rates (0.5, 1, and 1.5 m/s). Applying the leave-one-out cross validation methodology, simulated and experimental data were in good agreement presenting an error < 2.4 %. Quality index optimal values were found at 62.9 °C and 1.0 m/s using genetic algorithm.