611 resultados para tall fescue


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent reassessment of the phylogenetic affinities of cetaceans makes it timely to compare their placentation with that of the artiodactyls. We studied the placentae of two sympatric species of dolphin from the Amazon River Basin, representing two distinct families. The umbilical cord branched to supply a bilobed allantoic sac. Small blood vessels and smooth muscle bundles were found within the stroma of the cord. Foci of squamous metaplasia occurred in the allanto-amnion and allantochorion. The interhemal membrane of the placenta was of the epitheliochorial type. Two different types of trophoblastic epithelium were seen. Most was of the simple columnar type and indented by fetal capillaries. However, there were also areolar regions with tall columnar trophoblast and these were more sparsely supplied with capillaries. The endometrium was well vascularised and richly supplied with actively secreting glands. These findings are consistent with the current view that Cetacea are nested within Artiodactyla as sister group to the hippopotamids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Per quanto riguarda le costruzioni in conglomerato cementizio armato gettato in opera, i sistemi strutturali più comunemente utilizzati sono quelli a telaio (con trasmissione di momento flettente), a setti portanti o una combinazione di entrambi. A partire dagli anni ’60, numerosissimi sono stati gli studi relativamente al comportamento sismico di strutture in c.a. a telaio. Lo stesso si può affermare per le costruzioni costituite da pareti miste a telai. In particolare, l’argomento della progettazione sismica di tali tipologie di edifici ha sempre riguardato soprattutto gli edifici alti nei quali, evidentemente, l’impiego delle pareti avveniva allo scopo di limitarne la elevata deformabilità. Il comportamento sismico di strutture realizzate interamente a pareti portanti in c.a. è stato meno studiato negli anni, nonostante si sia osservato che edifici realizzati mediante tali sistemi strutturali abbiano mostrato, in generale, pregevoli risorse di resistenza nei confronti di terremoti anche di elevata intensità. Negli ultimi 10 anni, l’ingegneria sismica si sta incentrando sull’approfondimento delle risorse di tipologie costruttive di cui si è sempre fatto largo uso in passato (tipicamente nei paesi dell’Europa continentale, in America latina, negli USA e anche in Italia), ma delle quali mancavano adeguate conoscenze scientifiche relativamente al loro comportamento in zona sismica. Tali tipologie riguardano sostanzialmente sistemi strutturali interamente costituiti da pareti portanti in c.a. per edifici di modesta altezza, usualmente utilizzati in un’edilizia caratterizzata da ridotti costi di realizzazione (fabbricati per abitazioni civili e/o uffici). Obiettivo “generale” del lavoro di ricerca qui presentato è lo studio del comportamento sismico di strutture realizzate interamente a setti portanti in c.a. e di modesta altezza (edilizia caratterizzata da ridotti costi di realizzazione). In particolare, le pareti che si intendono qui studiare sono caratterizzate da basse percentuali geometriche di armatura e sono realizzate secondo la tecnologia del cassero a perdere. A conoscenza dello scrivente, non sono mai stati realizzati, fino ad oggi, studi sperimentali ed analitici allo scopo di determinare il comportamento sismico di tali sistemi strutturali, mentre è ben noto il loro comportamento statico. In dettaglio, questo lavoro di ricerca ha il duplice scopo di: • ottenere un sistema strutturale caratterizzato da elevate prestazioni sismiche; • mettere a punto strumenti applicativi (congruenti e compatibili con le vigenti normative e dunque immediatamente utilizzabili dai progettisti) per la progettazione sismica dei pannelli portanti in c.a. oggetto del presente studio. Al fine di studiare il comportamento sismico e di individuare gli strumenti pratici per la progettazione, la ricerca è stata organizzata come segue: • identificazione delle caratteristiche delle strutture studiate, mediante lo sviluppo/specializzazione di opportune formulazioni analitiche; • progettazione, supervisione, ed interpretazione di una estesa campagna di prove sperimentali eseguita su pareti portanti in c.a. in vera grandezza, al fine di verificarne l’efficace comportamento sotto carico ciclico; • sviluppo di semplici indicazioni (regole) progettuali relativamente alle strutture a pareti in c.a. studiate, al fine di ottenere le caratteristiche prestazionali desiderate. I risultati delle prove sperimentali hanno mostrato di essere in accordo con le previsioni analitiche, a conferma della validità degli strumenti di predizione del comportamento di tali pannelli. Le elevatissime prestazioni riscontrate sia in termini di resistenza che in termini di duttilità hanno evidenziato come le strutture studiate, così messe a punto, abbiano manifestato un comportamento sismico più che soddisfacente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many animals, sexual selection on male traits results from female mate choice decisions made during a sequence of courtship behaviors. We use a bower-building cichlid fish, Nyassachromis cf. microcephalus, to show how applying standard selection analysis to data on sequential female assessment provides new insights into sexual selection by mate choice. We first show that the cumulative selection differentials confirm previous results suggesting female choice favors males holding large volcano-shaped sand bowers. The sequential assessment analysis reveals these cumulative differentials are the result of selection acting on different bower dimensions during the courtship sequence; females choose to follow males courting from tall bowers, but choose to engage in premating circling with males holding bowers with large diameter platforms. The approach we present extends standard selection analysis by partitioning the variances of increasingly accurate estimates of male reproductive fitness and is applicable to systems in which sequential female assessment drives sexual selection on male traits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent claims of blood vessels extracted from dinosaur fossils challenge classical views of soft-tissue preservation. Alternatively, these structures may represent postdepositional,diagenetic biofilms that grew on vascular cavity surfaces within the fossil. Similar red, hollow, tube-shaped structures were recovered from well-preserved and poorly-preserved (abraded, desiccated, exposed) Upper Cretaceous dinosaur fossils in this study. Integration of light microscopy, scanning electron microscopy, and energy dispersive x-ray spectroscopy was used to compare these vessel structures to the fossils from which they are derived. Vessel structures are typically 100-400 μm long, 0.5-1.5 μm thick, 10-40 μm in diameter and take on a wide range of straight, curved, andbranching morphologies. Interior surfaces vary from smooth to globular and typically contain spheres, rods, and fibrous structures (< 2 μm in diameter) incorporated into the surface. Exterior surfaces exhibit 2-μm-tall converging ridges, spaced 1-3 μm apart, that are sub-parallel to the long axis of the vessel structure. Fossil vascular cavities are typically coated with a smooth or grainy orange layer that shows a wide range of textures including smooth, globular, rough, ropy, and combinations thereof. Coatings tend to overlay secondary mineral crystals and framboids, confirming they are not primary structures of the fossil. For some cavity coatings, the surface that had been in contact with the bone exhibits a ridged texture, similar to that of vessel structures, having formed as a mold of the intravascular bone surface. Thus, vessel structures are interpreted as intact cavity coatings isolated after the fossil is demineralized. The presence of framboids and structures consistent in size and shape with bacteria cells, the abundance of iron in cavity coatings, and the growth of biofilms directly from the fossil that resemble respective cavity coatings support the hypothesis that vessel structures result from ironconsuming bacteria that form biofilms on the intravascular bone surfaces of fossil dinosaur bone. This also accounts for microstructures resembling osteocytes as some fossil lacunae are filled with the same iron oxide that comprises vessel structures andcoatings. Results of this study show that systematic, high-resolution SEM analyses of vertebrate fossils can provide improved insight on microtaphonomic processes, including the role of bacteria in diagenesis. These results conflict with earlier claims of dinosaurblood vessels and osteocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tall epithelium of the developing chick embryo lung is converted to a squamous one, which participates in formation of the thin blood-gas barrier. We show that this conversion occurred through processes resembling exocrine secretion. Initially, cells formed intraluminal protrusions (aposomes), and then transcellular double membranes were established. Gaps between the membranes opened, thus, severing the aposome from the cell. Alternatively, aposomes were squeezed out by adjacent cells or were spontaneously constricted and extruded. As a third mechanism, formation and fusion of severed vesicles or vacuoles below the aposome and their fusion with the apicolateral plasma membrane resulted in severing of the aposome. The atria started to form by progressive epithelial attenuation and subsequent invasion of the surrounding mesenchyme at regions delineated by subepithelial alpha-smooth muscle actin-positive cells. Further epithelial attenuation was achieved by vacuolation; rupture of such vacuoles with resultant numerous microfolds and microvilli, which were abscised to accomplish a smooth squamous epithelium just before hatching.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patterns of increasing leaf mass per area (LMA), area-based leaf nitrogen (Narea), and carbon isotope composition (δ13C) with increasing height in the canopy have been attributed to light gradients or hydraulic limitation in tall trees. Theoretical optimal distributions of LMA and Narea that scale with light maximize canopy photosynthesis; however, sub-optimal distributions are often observed due to hydraulic constraints on leaf development. Using observational, experimental, and modeling approaches, we investigated the response of leaf functional traits (LMA, density, thickness, and leaf nitrogen), leaf carbon isotope composition (δ13C), and cellular structure to light availability, height, and leaf water potential (Ψl) in an Acer saccharum forest to tease apart the influence of light and hydraulic limitations. LMA, leaf and palisade layer thickness, and leaf density were greater at greater light availability but similar heights, highlighting the strong control of light on leaf morphology and cellular structure. Experimental shading decreased both LMA and area-based leaf nitrogen (Narea) and revealed that LMA and Narea were more strongly correlated with height earlier in the growing season and with light later in the growing season. The supply of CO2 to leaves at higher heights appeared to be constrained by stomatal sensitivity to vapor pressure deficit (VPD) or midday leaf water potential, as indicated by increasing δ13C and VPD and decreasing midday Ψl with height. Model simulations showed that daily canopy photosynthesis was biased during the early growing season when seasonality was not accounted for, and was biased throughout the growing season when vertical gradients in LMA and Narea were not accounted for. Overall, our results suggest that leaves acclimate to light soon after leaf expansion, through an accumulation of leaf carbon, thickening of palisade layers and increased LMA, and reduction in stomatal sensitivity to Ψl or VPD. This period of light acclimation in leaves appears to optimize leaf function over time, despite height-related constraints early in the growing season. Our results imply that vertical gradients in leaf functional traits and leaf acclimation to light should be incorporated in canopy function models in order to refine estimates of canopy photosynthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animal production, hay production and feeding, winter forage composition changes, and summer pasture yields and nutrient composition of a year-round grazing system for spring-calving and fall-calving cows were compared to those of a conventional, minimal land system. Cows in the year-round and minimal land systems grazed forage from smooth bromegrassorchardgrass-birdsfoot trefoil (SB-O-T) pastures at 1.67 and 3.33 acres, respectively, per cow in the summer. During the summer, SB-O-T pastures in the year-round grazing system also were grazed by stockers at 1.67 stockers per acre, and spring-calving and fall-calving cows grazed smooth bromegrass–red clover (SB-RC) and endophyte-free tall fescue–red clover (TF-RC) at 2.5 acres per cow for approximately 45 days in midsummer. In the year-round grazing system, spring-calving cows grazed corn crop residues at 2.5 acres per cow and stockpiled SB-RC pastures at 2.5 acres per cow; fallcalving cows grazed stockpiled TF-RC pastures at 2.5 acres per cow during winter. In the minimal land system, in winter, cows were maintained in a drylot on first-cutting hay harvested from 62.5–75% of the pasture acres during summer. Hay was fed to maintain a body condition score of 5 on a 9-point scale for springcalving cows in both systems and a body condition score of 3 for fall-calving cows in the year-round system. Over 3 years, mean body weights of fall-calving cows in the year-round system did not differ from the body weights of spring-calving cows in either system, but fall-calving cows had higher (P < .05) body condition scores compared to spring-calving cows in either system. There were no differences among all groups of cows in body condition score changes over the winter grazing season (P > .05). During the summer grazing season, fall-calving cows in the year- round system and springcalving cows in the minimal land system gained more body condition and more weight (P < .05) than springcalving cows in the year-round grazing system. Fall calves in the year-round system had higher birth weights, lower weaning weights, and lower average preweaning daily gains compared to either group of spring calves (P < .05). However, there were no significant differences for birth weights, weaning weights, or average pre-weaning daily gains between spring calves in either system over the 3-year experiment (P > .05). The amount of total growing animal production (calves and stockers) per acre for each system did not differ in any year (P > .05). Over the 3-year experiment, 1.9 ton more hay was fed per cow and 1 ton more hay was fed per cow–calf pair in the minimal land system compared to the year-round grazing system (P < .05).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecosystems are faced with high rates of species loss which has consequences for their functions and services. To assess the effects of plant species diversity on the nitrogen (N) cycle, we developed a model for monthly mean nitrate (NO3-N) concentrations in soil solution in 0-30 cm mineral soil depth using plant species and functional group richness and functional composition as drivers and assessing the effects of conversion of arable land to grassland, spatially heterogeneous soil properties, and climate. We used monthly mean NO3-N concentrations from 62 plots of a grassland plant diversity experiment from 2003 to 2006. Plant species richness (1-60) and functional group composition (1-4 functional groups: legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs) were manipulated in a factorial design. Plant community composition, time since conversion from arable land to grassland, soil texture, and climate data (precipitation, soil moisture, air and soil temperature) were used to develop one general Bayesian multiple regression model for the 62 plots to allow an in-depth evaluation using the experimental design. The model simulated NO3-N concentrations with an overall Bayesian coefficient of determination of 0.48. The temporal course of NO3-N concentrations was simulated differently well for the individual plots with a maximum plot-specific Nash-Sutcliffe Efficiency of 0.57. The model shows that NO3-N concentrations decrease with species richness, but this relation reverses if more than approx. 25 % of legume species are included in the mixture. Presence of legumes increases and presence of grasses decreases NO3-N concentrations compared to mixtures containing only small and tall herbs. Altogether, our model shows that there is a strong influence of plant community composition on NO3-N concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resource heterogeneity may influence how plants are attacked and respond to consumers in multiple ways. Perhaps a better understanding of how this interaction might limit sapling recruitment in tree populations may be achieved by examining species’ functional responses to herbivores on a continuum of resource availability. Here, we experimentally reduced herbivore pressure on newly established seedlings of two dominant masting trees in 40 canopy gaps, across c. 80 ha of tropical rain forest in central Africa (Korup, Cameroon). Mesh cages were built to protect individual seedlings, and their leaf production and changes in height were followed for 22 months. With more light, herbivores increasingly prevented the less shade-tolerant Microberlinia bisulcata from growing as tall as it could and producing more leaves, indicating an undercompensation. The more shade-tolerant Tetraberlinia bifoliolata was much less affected by herbivores, showing instead near to full compensation for leaf numbers, and a negligible to weak impact of herbivores on its height growth. A stage-matrix model that compared control and caged populations lent evidence for a stronger impact of herbivores on the long-term population dynamics of M. bisulcata than T. bifoliolata. Our results suggest that insect herbivores can contribute to the local coexistence of two abundant tree species at Korup by disproportionately suppressing sapling recruitment of the faster-growing dominant via undercompensation across the light gradient created by canopy disturbances. The functional patterns we have documented here are consistent with current theory, and, because gap formations are integral to forest regeneration, they may be more widely applicable in other tropical forest communities. If so, the interaction between life-history and herbivore impact across light gradients may play a substantial role in tree species coexistence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the literature, contrasting effects of plant species richness on the soil water balance are reported. Our objective was to assess the effects of plant species and functional richness and functional identity on soil water contents and water fluxes in the experimental grassland of the Jena Experiment. The Jena Experiment comprises 86 plots on which plant species richness (0, 1, 2, 4, 8, 16, and 60) and functional group composition (zero to four functional groups: legumes, grasses, tall herbs, and small herbs) were manipulated in a factorial design. We recorded meteorological data and soil water contents of the 0·0–0·3 and 0·3–0·7 m soil layers and calculated actual evapotranspiration (ETa), downward flux (DF), and capillary rise with a soil water balance model for the period 2003–2007. Missing water contents were estimated with a Bayesian hierarchical model. Species richness decreased water contents in subsoil during wet soil conditions. Presence of tall herbs increased soil water contents in topsoil during dry conditions and decreased soil water contents in subsoil during wet conditions. Presence of grasses generally decreased water contents in topsoil, particularly during dry phases; increased ETa and decreased DF from topsoil; and decreased ETa from subsoil. Presence of legumes, in contrast, decreased ETa and increased DF from topsoil and increased ETa from subsoil. Species richness probably resulted in complementary water use. Specific functional groups likely affected the water balance via specific root traits (e.g. shallow dense roots of grasses and deep taproots of tall herbs) or specific shading intensity caused by functional group effects on vegetation cover. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic improvement of native crops is a new and promising strategy to combat hunger in the developing world. Tef is the major staple food crop for approximately 50 million people in Ethiopia. As an indigenous cereal, it is well adapted to diverse climatic and soil conditions; however, its productivity is extremely low mainly due to susceptibility to lodging. Tef has a tall and weak stem, liable to lodge (or fall over), which is aggravated by wind, rain, or application of nitrogen fertilizer. To circumvent this problem, the first semi-dwarf lodging-tolerant tef line, called kegne, was developed from an ethyl methanesulphonate (EMS)-mutagenized population. The response of kegne to microtubule-depolymerizing and -stabilizing drugs, as well as subsequent gene sequencing and segregation analysis, suggests that a defect in the α-Tubulin gene is functionally and genetically tightly linked to the kegne phenotype. In diploid species such as rice, homozygous mutations in α-Tubulin genes result in extreme dwarfism and weak stems. In the allotetraploid tef, only one homeologue is mutated, and the presence of the second intact α-Tubulin gene copy confers the agriculturally beneficial semi-dwarf and lodging-tolerant phenotype. Introgression of kegne into locally adapted and popular tef cultivars in Ethiopia will increase the lodging tolerance in the tef germplasm and, as a result, will improve the productivity of this valuable crop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

by Louis Freedberg

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although negative density dependence (NDD) can facilitate tree species coexistence in forests, the underlying mechanisms can differ, and rarely are the dynamics of seedlings and saplings studied together. Herein we present and discuss a novel mechanism based on our investigation of NDD predictions for the large, grove-forming ectomycorrhizal mast fruiting tree, Microberlinia bisulcata (Caesalpiniaceae), in an 82.5-ha plot at Korup, Cameroon. We tested whether juvenile density, size, growth and survival decreases with increasing conspecific adult basal area for 3245 ‘new’ seedlings and 540 ‘old’ seedlings (< 75-cm tall) during an approximately 4-year study period (2008–2012) and for 234 ‘saplings’ (≥ 75-cm tall) during an approximately 6-year study period (2008–2014). We found that the respective densities of new seedlings, old seedlings and saplings were positively, not and negatively related to increasing BA. Maximum leaf numbers and heights of old seedlings were negatively correlated with increasing basal areas, as were sapling heights and stem diameters. Whereas survivorship of new seedlings decreased by more than one-half with increasing basal area over its range in 2010–2012, that of old seedlings decreased by almost two-thirds, but only in 2008–2010, and was generally unrelated to conspecific seedling density. In 2010–2012 relative growth rates in new seedlings’ heights decreased with increasing basal area, as well as with increasing seedling density, together with increasing leaf numbers, whereas old seedlings’ growth was unrelated to either conspecific density or basal area. Saplings of below-average height had reduced survivorship with increasing basal area (probability decreasing from approx. 0.4 to 0.05 over the basal area range tested), but only sapling growth in terms of leaf numbers decreased with increasing basal area. These static and dynamic results indicate that NDD is operating within this system, possibly stabilizing the M. bisulcata population. However, these NDD patterns are unlikely to be caused by symmetric competition or by consumers. Instead, an alternative mechanism for conspecific adult–juvenile negative feedback is proposed, one which involves the interaction between tree phenology and ectomycorrhizal linkages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intraspecific and interspecific architectural patterns were studied for eight tree species of a Bornean rain forest. Trees 5--19 m tall in two 4-ha permanent sample plots in primary forest were selected, and three light descriptors and seven architectural traits for each tree were measured. Two general predictions were made: (1) Slow growing individuals (or short ones) encounter lower light, and have flatter crowns, fewer leaf layers, and thinner stems, than do fast growing individuals (or tall ones). (2) Species with higher shade-tolerance receive less light and have flatter crowns, fewer leaf layers, and thinner stems, than do species with lower shade-tolerance. Shade-tolerance is assumed to decrease with maximum growth rate, mortality rate, and adult stature of a species.