453 resultados para superconductors


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Finite conductivity in superconductors is taken into account by approximate boundary conditions imposed directly when deriving pair summatory equations, which are solved using the Galerkin method and the basis describing the edge singularity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have excited mid-infrared surface plasmons in two YBCO thin films of contrasting properties using attenuated total reflection of light and found that the imaginary part of the dielectric function decreases linearly with reduction in temperature. This result is in contrast with the commonly reported conclusion of infrared normal reflectance studies. If sustained it may clarify the problem of understanding the normal state properties of YBCO and the other cuprates. The dielectric function of the films, epsilon = epsilon(1) + i epsilon(2), was determined between room temperature and 80K: epsilon(1) was found to be only slightly temperature dependent but somewhat sample dependent, probably as a result of surface and grain boundary contamination. The imaginary part, epsilon(2), (and the real part of the conductivity, sigma(1),) decreased linearly with reduction in temperature in both films. Results obtained were: for film 1: epsilon(1) = - 14.05 - 0.0024T and epsilon(2) - 4.11 + 0.086T and for film 2: epsilon(1) = - 24.09 + 0.0013T and epsilon(2) = 7.66 + 0.067T where T is the temperature in Kelvin. An understanding of the results is offered in terms of temperature-dependent intrinsic intragrain inelastic scattering and temperature-independent contributions: elastic and inelastic grain boundary scattering and optical interband (or localised charge) absorption. The relative contribution of each is estimated. A key conclusion is that the interband (or localised charge) absorption is only similar to 10%. Most importantly, the intrinsic scattering rate, 1/tau, decreases linearly with fall in temperature, T, in a regime where current theory predicts dependence on frequency, omega, to dominate. The coupling constant, lambda, between the charge carriers and the thermal excitations has a value of 1.7, some fivefold greater than the far infrared value. These results imply a need to restate the phenomenology of the normal state of high temperature superconductors and seek a corresponding theoretical understanding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is a contribution for the assessment and comparison of magnet properties based on magnetic field characteristics particularly concerning the magnetic induction uniformity in the air gaps. For this aim, a solver was developed and implemented to determine the magnetic field of a magnetic core to be used in Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry. The electromagnetic field computation is based on a 2D finite-element method (FEM) using both the scalar and the vector potential formulation. Results for the magnetic field lines and the magnetic induction vector in the air gap are presented. The target magnetic induction is 0.2 T, which is a typical requirement of the FFC NMR technique, which can be achieved with a magnetic core based on permanent magnets or coils. In addition, this application requires high magnetic induction uniformity. To achieve this goal, a solution including superconducting pieces is analyzed. Results are compared with a different FEM program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polarized reflectance measurements of the quasi I-D charge-transfer salt (TMTSFh CI04 were carried out using a Martin-Puplett-type polarizing interferometer and a 3He refrigerator cryostat, at several temperatures between 0.45 K and 26 K, in the far infrared, in the 10 to 70 cm- 1 frequency range. Bis-tetramethyl-tetraselena-fulvalene perchlorate crystals, grown electrochemically and supplied by K. Behnia, of dimensions 2 to 4 by 0.4 by 0.2 mm, were assembled on a flat surface to form a mosaic of 1.5 by 3 mm. The needle shaped crystals were positioned parallel to each other along their long axis, which is the stacking direction of the planar TMTSF cations, exposing the ab plane face (parallel to which the sheets of CI04 anions are positioned). Reflectance measurements were performed with radiation polarized along the stacking direction in the sample. Measurements were carried out following either a fast (15-20 K per minute) or slow (0.1 K per minute) cooling of the sample. Slow cooling permits the anions to order near 24 K, and the sample is expected to be superconducting below 1.2 K, while fast cooling yields an insulating state at low temperatures. Upon the slow cooling the reflectance shows dependence with temperature and exhibits the 28 cm- 1 feature reported previously [1]. Thermoreflectance for both the 'slow' and 'fast' cooling of the sample calculated relative to the 26 K reflectance data indicates that the reflectance is temperature dependent, for the slow cooling case only. A low frequency edge in the absolute reflectance is assigned an electronic origin given its strong temperature dependence in the relaxed state. We attribute the peak in the absolute reflectance near 30 cm-1 to a phonon coupled to the electronic background. Both the low frequency edge and the 30 cm-1 feature are noted te shift towards higher frequcncy, upon cntering the superconducting state, by an amount of the order of the expected superconducting energy gap. Kramers-Kronig analysis was carried out to determine the optical conductivity for the slowly cooled sample from the measured reflectance. In order to do so the low frequency data was extrapolated to zero frequency using a Hagen-Ru bens behaviour, and the high frequency data was extended with the data of Cao et al. [2], and Kikuchi et al. [3]. The real part of the optical conductivity exhibits an asymmetric peak at 35 cm-1, and its background at lower frequencies seems to be losing spectral weight with lowering of the temperature, leading us to presume that a narrow peak is forming at even lower frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

/c-(BETS)2FeBr4 is the first antiferromagnetic organic superconductor with successive antiferromagnetic and superconducting transitions at Ta^=2.5K and Tc=l.lK respectively at ambient pressure. Polarized reflectance measurements were performed on three single crystalsamples of this material using a Briiker IFS66V/S Interferometer, and a Bolometer detector or an MCT detector, at seven temperatures between 4K and 300K, in both the far-infrared and mid-infrared frequency range. After the reflectance results were obtained, the Kramers-Kronig dispersion relation was apphed to determine the optical conductivity of /c-(BETS)2FeBr4 at these seven temperatures. Additionally, the optical conductivity spectra were fitted with a Drude/Lorentz Oscillator model in order to study the evolution of the optical conductivity with temperature along the a-axis and c-axis. The resistivities calculated from the Drude model parameters along the a-axis and c-axis agreed reasonably with previous transport measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

K-(BETS)2FeBr4 is a quasi-2D charge transfer organic metal with interesting electronic and magnetic properties. It undergoes a transition to an antiferromagnetic (AF) state at ambient pressure at the Neel temperature (T^^) = 2.5 K, as well as to a superconducting (SC) state at 1.1 K [1]. The temperature dependence of the electrical resistivity shows a small decrease at T;v indicating the resistivity drops as a result of the onset of the ordering of Fe'*''" spins. A sharp drop in the resistivity at 1.1 K is due to its superconducting transition. The temperature dependence of the susceptibility indicates an antiferromagnetic spin structure with the easy axis parallel to the a-axis. The specific heat at zero-field shows a large peak at about 2.4 K, which corresponds to the antiferromagnetic transition temperature (Tat) and no anomaly is observed around the superconducting transition temperature (1.1 K) demonstrating that the magnetically ordered state is not destroyed by the appearance of another phase transition (the superconducting transition) in the 7r-electron layers [1], [2]. This work presents an investigation of how the low frequency electromagnetic response is affected by the antiferromagnetic and superconducting states, as well as the onset of strong correlation. The location of the easy axis of three samples was determined and polarized thermal reflectance measurements of these «-(BETS)2FeBr4 samples oriented with their vertical axis along the a- and c axes were then carried out using a *He refrigerator cryostat and a Martin-Puplett type polarizing interferometer at various temperatures (T = 0.5 K, 1.4 K. 1.9 K, 2.8 K) above and below the superconducting state and/or antiferromagnetic state. Comparison of the SC state to the normal state along the o- and c-axes indicates a rising thermal reflectance at low frequencies (below 10 cm"' ) which may be a manifestation of the superconducting energy gap. A dip-Hke feature is detected at low frequencies (below 15 cm"') in the thermal reflectance plots which probe the antiferromagnetic state along the two axes, and may be due to the opening of a gap in the excitation spectrum as a result of the antiferromagnetism. In another set of experiments, thermal reflectance measurements carried out along the a- and c-axes at higher temperatures (10 K-80 K) show that the reflectivity decreases with increasing temperature to 60 K (the coherence temperature) above which it increases again. Comparison of the thermal reflectance plots along the a- and c-axes at higher temperatures reveals an anisotropy between these two axes. The Hagen-Rubens thermal reflectance plots corresponding to an average over the ac-plane were calculated using experimental hterature resistivity values. Comparison of the Hagen-Rubens plots with the experimental thermal reflectance along the a- and c-axes indicates that both exhibit the general trend of a decrease in thermal reflectance with increasing frequency, however the calculated Hagen-Rubens thermal reflectance at different temperatures is much lower than the experimental curves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of LaVi^xOs compounds (x=0.00, 0.02, 0.04, 0.06, 0.08) were prepeired using the standard solid reaction. The samples were chareicterized by X-ray diffraction (XRD), fourprobe resistivity, smd magnetic susceptibility studies. Powder X-ray diffraction analysis indicated the formation of a single-phase sample with a orthorhombic structure which was first found in GdFeOs (space group Pnma) . The Unit Cell program was used for calculating lattice peirameters from XFID data. The XRD spectnim could be indexed on a cubic lattice with Og = 2ap ~ (7.8578 to 7.9414 A). The lattice parameter was observed to increase as the Vanadium vacancy increased. Four-probe resistivity measurements exhibited semiconductor behavior for all sajnples from room temperature down to 19K. The resistivity of samples increased with increasing Vanadium vacancy. The resistivity of samples demonstrated activated conduction with an activation energy of approximately 0.2 eV. The activation energy increased with increasing lattice parameter. Field cool magnetic susceptibility measurements were performed with field of 500 G from 300 K to 5 K. These measurements indicated the presence of an antiferromagnetic transition at about 140 K. The data was fitted above Neel temperature to Ciurie-Weiss law yielding a negative parameignetic Curie temperature. This implies that antiferromagnetic ordering is present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the Physical Vapor Transport method, single crystals of Cd2Re207 have been grown, and crystals of dimensions up to 8x6x2 mm have been achieved. X-ray diffraction from a single crystal of Cd2Re207 has showed the crystal growth in the (111) plane. Powder X-ray diffraction measurements were performed on ^^O and ^^O samples, however no difference was observed. Assigning the space group Fd3m to Cd2Re207 at room temperature and using structure factor analysis, the powder X-ray diffraction pattern of the sample was explained through systematic reflection absences. The temperatiure dependence of the resistivity measurement of ^^O has revealed two structural phase transitions at 120 and 200 K, and the superconducting transition at 1.0 K. Using Factor Group Analysis on three different structiures of Cd2Re207, the number of IR and Raman active phonon modes close to the Brillouin zone centre have been determined and the results have been compared to the temperature-dependence of the Raman shifts of ^^O and ^*0 samples. After scaling (via removing Bose-Einstein and Rayleigh scattering factors from the scattered light) all spectra, each spectrum was fitted with a number of Lorentzian peaks. The temperature-dependence of the FWHM and Raman shift of mode Eg, shows the effects of the two structurjil phase transitions above Tc. The absolute reflectance of Cd2Re207 - '^O single crystals in the far-infrared spectral region (7-700 cm~^) has been measured in the superconducting state (0.5 K), right above the superconducting state (1.5 K), and in the normal state (4.2 K). Thermal reflectance of the sample at 0.5 K and 1.5 K indicates a strong absorption feature close to 10 cm~^ in the superconducting state with a reference temperature of 4.2 K. By means of Kramers-Kronig analysis, the absolute reflectance was used to calculate the optical conductivity and dielectric function. The real part of optical conductivity shows five distinct active phonon modes at 44, 200, 300, 375, and 575 cm~' at all temperatures including a Drude-like behavior at low frequencies. The imaginary part of the calculated dielectric function indicates a mode softening of the mode 44 cm~' below Tc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High temperature superconductors were discovered in 1986, but despite considerable research efforts, both experimental and theoretical, these materials remain poorly understood. Because their electronic structure is both inhomogeneous and highly correlated, a full understanding will require knowledge of quasiparticle properties both in real space and momentum space. In this thesis, we will present a theoretical analysis of the scanning tunneling microscopy (STM) data in BSCCO. We introduce the Bogoliubov-De Gennes Hamiltonian and solve it numerically on a two-dimensional 20 x 20 lattice under a magnetic field perpendicular to the surface. We consider a vortex at the center of our model. We introduce a Zn impurity in our lattice as a microscopic probe of the physical properties of BSCCO. By direct numerical diagonalization of the lattice BogoliubovDe Gennes Hamiltonian for different positions of the impurity, we can calculate the interaction between the vortex and the impurity in a d-wave superconductor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrysttdline samples of NaiCoOa were prepared using the "Rapid heat-up" method. One set of samples was annealed in flowing O2, while the other set in flowing Argon. X-Ray diffraction measurements indicated a stable phase of Nao.7Co02 mixed with C03O4 for all the samples even though they differed in concentration of Na. Argon annealed samples were insulators, whereas the ones annealed in O2 were metallic. Most of the measurements were performed on the sample Nao.7Co02, because it is the host compound for the superconductor sample Nao.35Co02-H20. Magnetization measurement showed that the magnetic moment decreased with increasing sodium concentration. This is due to the existence of C03O4 in samples with Na^ 0.7. As sodium concentration decreases, the magnetic moment increases due to the increasing concentration of C03O4 and its large magnetic moment. Magnetization measurements showed that the magnetic moment of Nao.7Co02 is field-dependent in low fields eind field-independent in fields higher than 100 G. Resistivity changes with temperature (dp/dT) increased with increasing Na concentration. Also resistivity measurements were performed under different hydrostatic pressures on Nao.7Co02. Two transitions were observed; one at a temperature Ti ~20 K and the other at T2 ^280 K, the transition at Ti has a magnetic origin and the one at T2 is a structiural transition. It was noticed that pressure aJfects resistivity of the sample. At higher pressures resistivity changes faster with temperature. Magnetoresistance measurement showed a small change in the resistivity, especially at lower temperatures. A novel layered superconductor Nao.35Co02H20 was prepared using de-intercalation of Na from the host compound Nao.7Co02. FVom the temperature dependence of the magnetization, the superconducting transition temperature and lower critictil field have been estimated as Tc=4.12 K and Hci=66 G, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temperature dependent resistivity, p, magnetic susceptibility, X, and far-infrared reflectance measurements were made on the low Tc superconductor UBe13. Two variants of UBe13 have been proposed, named 'L'- (for low Tc ) and 'H'-type (for high Tc ). Low temperature resistivity measurements confirmed that our sample was of H-type and that the transition temperature was at 0.9 K. This was further confirmed with the observation of this transition in the AC-susceptibility. Low temperature reflectance measurements showed a decrease in the reflectivity as the temperature is lowered from 300 to 10 K, which is in qualitative agreement with the increasing resistivity in this temperature range as temperature is lowered. No dramatic change in the reflectivity was observed between 10 and 0.75 K. A further decrease of the reflectance was observed for the temperature of 0.5 K. The calculated optical conductivity shows a broad minimum near 80 cm-1 below 45 K. Above 45 K the conductivity is relatively featureless. As the temperature is lowered, the optical conductivity decreases. The frequency dependent scattering rate was found to be flat for temperatures between 300 and 45 K. The development of a peak, at around 70 cm-1 was found for temperatures of 45 K and below. This peak has been associated with the energy at which the transition to a coherent state occurs from single impurity scattering in other heavy fermion systems. The frequency dependent mass enhancement coefficient was found to increase at low frequencies as the frequency decreases. Its' magnitude as frequency approaches zero also increased as the temperature decreased.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optical response to far infrared radiation has been measured on a mosaic of heavy fermion CeColnssingle crystals. The superconducting transition temperature of the crystals has been determined by van der Pauw resistivity and ac-susceptibility measurements as Tc = 2.3 K. The optical measurements were taken above and below the transition temperature using a 3He cryostat and step and integrate Martin-Puplett type polarizing interferometer. The absolute reflectance of the heavy fermion CeColns in the superconducting state in range (0, 100)cm-1 was calculated from the measured thermal reflectance, using the normal state data of Singley et al and a low frequency extrapolation for a metallic material in the Hagen-Rubens regime. By means of Kramers-Kronig analysis the absolute reflectance was used to calculate the optical conductivity of the sample. The real part of the calculated complex conductivity 0-(w) ofCeColns indicates a possible opening of an energy gap close to 50 em-I.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The macroscopic properties of the superconducting phase in the multiphase compound YPd5B3 C.3 have been investigated. The onset of superconductivity was observed at 22.6 K, zero resistance at 21.2 K, the lower critical field Hel at 5 K was determined to be Hel (5) rv 310 Gauss and the compound was found to be an extreme type-II superconductor with the upper critical field in excess of 55000 Gauss at 15 K. From the upper and lower critical field values obtained, several important parameters of the superconducting state were determined at T = 15 K. The Ginzburg-Landau paramater was determined to be ~ > 9 corresponding to a coherence length ~ rv 80A and magnetic penetration depth of 800A. In addition measurements of the superconducting transition temperature Te(P) under purely hydrostatically applied pressure have been carried out. Te(P) of YPd5B3 C.3 decreases linearly with dTe/dP rv -8.814 X 10-5 J