945 resultados para subtropical estuaries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrations of the weakly oestrogenic degradation products of alkylphenol polyethoxylate (APE) surfactants (nonylphenol, octylphenol, nonylphenol monoethoxylate and nonylphenol diethoxylate) were measured in water and sediments from British rivers and estuaries collected during 1994 and 1995. In addition, a series of samples of tissues of wild fish from the River Aire, and from a laboratory dosing experiment were analysed for alkylphenols, to assess the degree of bioaccumulation of these compounds. Measurable concentrations of APE residues were recorded in the River Aire (15–76 μg/l total extractable alkylphenols), the River Mersey (6–11 μg/l) and the Tees estuary (up to 76 μg/l). These levels exceed, or are close to, the no observed effect concentration for the induction of vitellogenesis in caged trout (5–20 μg/l total extractable alkylphenols), and may be sufficient to exert an oestrogenic effect on fish populations in these areas. A sediment sample from Bingley on the River Aire contained 15 μg/g (dry weight) nonylphenol, and concentrations in sediments from the Tees and Mersey estuaries exceeded 1 μg/g. These rivers receive a variety of trade waters via sewage treatment works (STW) effluents containing significant concentrations of APE. Elsewhere, concentrations in water and sediments were near or below limits of detection and biological effects are unlikely, suggesting that any oestrogenic effects observed in sewage outfalls and rivers not directly impacted by APE-containing trade-waters may be caused by other chemicals. Analysis of samples of trout muscle taken from a tank dosed at 65 μg/l nonylphenol indicated a bioaccumulation factor of between 90 and 125 after 3 weeks exposure. Samples of wild fish from the River Aire contained up to 0.8 μg/g nonylphenol in the muscle, a tissue bioaccumulation factor of approximately 50 relative to measured concentrations in water samples. A series of fish samples taken from offshore for food quality assurance purposes contained no detectable levels of APE residues (0.05–0.1 μg/g nonylphenol).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Natural Science Foundation of China (NSFC) [30670384, 30590381]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Afforestation in China's subtropics plays an important role in sequestering CO2 from the atmosphere and in storage of soil carbon (C). Compared with natural forests, plantation forests have lower soil organic carbon (SOC) content and great potential to store more C. To better evaluate the effects of afforestation on soil C turnover, we investigated SOC and its stable C isotope (delta C-13) composition in three planted forests at Qianyanzhou Ecological Experimental Station in southern China. Litter and soil samples were collected and analyzed for total organic C, delta C-13 and total nitrogen. Similarly to the vertical distribution of SOC in natural forests, SOC concentrations decrease exponentially with depth. The land cover type (grassland) before plantation had a significant influence on the vertical distribution of SOC. The SOC delta C-13 composition of the upper soil layer of two plantation forests has been mainly affected by the grass biomass C-13 composition. Soil profiles with a change in photosynthetic pathway had a more complex C-13 isotope composition distribution. During the 20 years after plantation establishment, the soil organic matter sources influenced both the delta C-13 distribution with depth, and C replacement. The upper soil layer SOC turnover in masson pine (a mean 34% of replacement in the 10 cm after 20 years) was more than twice as fast as that of slash pine (16% of replacement) under subtropical conditions. The results demonstrate that masson pine and slash pine plantations cannot rapidly sequester SOC into long-term storage pools in subtropical China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A global wavenumber-3 dipole SST mode is showed to exist in the Southern Hemisphere subtropical climate variability in austral summer. A positive (negative) phase of the mode is characterized by cool (warm) SST anomalies in the east and warm (cool) SST anomalies in the southwest of the south Indian, Pacific, and Atlantic Oceans, respectively. This coherent dipole structure is largely a response of ocean mixed layer to the atmospheric forcing characterized by migration and modulation of the subtropical high-pressures, in which the latent heat flux play a leading role through wind-induced evaporation, although ocean dynamics may also be crucial in forming SST anomalies attached to the continents. Exploratory analyses suggest that this mode is strongly damped by the negative heat flux feedback, with a persistence time about three months and no spectral peak at interannual to decadal time scales. As the subtropical dipole mode is linearly independent of ENSO and SAM, whether it represents an additional source of climate predictability should be further studied. Citation: Wang, F. (2010), Subtropical dipole mode in the Southern Hemisphere: A global view, Geophys. Res. Lett., 37, L10702, doi: 10.1029/2010GL042750.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seasonal generation and evolution of eddies in the region of the North Pacific Subtropical Countercurrent remain poorly understood due to the scarcity of available data. We used TOPEX/POSEIDON altimetry data from 1992 to 2007 to study the eddy field in this zone. We found that velocity shear between this region and the neighboring North Equatorial Current contributes greatly to the eddy generation. Furthermore, the eddy kinetic energy level (EKE) shows an annual cycle, maximum in April/May and minimum in December/January. Analyses of the temporal and spatial distributions of the eddy field revealed clearly that the velocity shear closely related to baroclinic instability processes. The eddy field seems to be more zonal than meridional, and the energy containing length scale shows a surprising lag of 2-3 months in comparison with the 1-D and 2-D EKE level. A similar phenomenon is observed in individual eddies in this zone. The results show that in this eddy field band, the velocity shear may drive the EKE level change so that the eddy field takes another 2-3 months to grow and interact to reach a relatively stable state. This explains the seasonal evolution of identifiable eddies.