804 resultados para students that use drugs
Resumo:
This paper discusses the choice to use two less conventional or “interesting” research methods, Q Methodology and Experience Sampling Method, rather than “status quo” research methods so common in the marketing discipline. It is argued that such methods have value for marketing academics because they widen the potential for discovery. The paper outlines these two research methods, providing examples of how they have been used in an experiential consumption perspective. Additionally the paper identifies some of the challenges to be faced when trying to publish research that use such less conventional methods, as well as offering suggestions to address them.
Resumo:
In their studies, Eley and Meyer (2004) and Meyer and Cleary (1998) found that there are sources of variation in the affective and process dimensions of learning in mathematics and clinical diagnosis specific to each of these disciplines. Meyer and Shanahan (2002) argue that: General purpose models of student learning that are transportable across different discipline contexts cannot, by definition, be sensitive to sources of variation that may be subject-specific (2002. p. 204). In other words, to explain the differences in learning approaches and outcomes in a particular discipline, there are discipline-specific factors, which cannot be uncovered in general educational research. Meyer and Shanahan (2002) argue for a need to "seek additional sources of variation that are perhaps conceptually unique ... within the discourse of particular disciplines" (p. 204). In this paper, the development of an economics-specific construct (called economic thinking ability) is reported. The construct aims to measure discipline-sited ability of students that has important influence on learning in economics. Using this construct, economic thinking abilities of introductory and intermediate level economics students were measured prior to the commencement, and at the end, of their study over one semester. This enabled factors associated with students' pre-course economic thinking ability and their development in economic thinking ability to be investigated. The empirical findings will address the 'nature' versus 'nurture' debate in economics education (Frank, et aI., 1993; Frey et al., 1993; Haucap and Tobias 2003). The implications for future research in economics education will also be discussed.
Resumo:
This paper presents a new approach to improving the effectiveness of autonomous systems that deal with dynamic environments. The basis of the approach is to find repeating patterns of behavior in the dynamic elements of the system, and then to use predictions of the repeating elements to better plan goal directed behavior. It is a layered approach involving classifying, modeling, predicting and exploiting. Classifying involves using observations to place the moving elements into previously defined classes. Modeling involves recording features of the behavior on a coarse grained grid. Exploitation is achieved by integrating predictions from the model into the behavior selection module to improve the utility of the robot's actions. This is in contrast to typical approaches that use the model to select between different strategies or plays. Three methods of adaptation to the dynamic features of the environment are explored. The effectiveness of each method is determined using statistical tests over a number of repeated experiments. The work is presented in the context of predicting opponent behavior in the highly dynamic and multi-agent robot soccer domain (RoboCup).
Resumo:
The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.
Resumo:
While it is commonly accepted that computability on a Turing machine in polynomial time represents a correct formalization of the notion of a feasibly computable function, there is no similar agreement on how to extend this notion on functionals, that is, what functionals should be considered feasible. One possible paradigm was introduced by Mehlhorn, who extended Cobham's definition of feasible functions to type 2 functionals. Subsequently, this class of functionals (with inessential changes of the definition) was studied by Townsend who calls this class POLY, and by Kapron and Cook who call the same class basic feasible functionals. Kapron and Cook gave an oracle Turing machine model characterisation of this class. In this article, we demonstrate that the class of basic feasible functionals has recursion theoretic properties which naturally generalise the corresponding properties of the class of feasible functions, thus giving further evidence that the notion of feasibility of functionals mentioned above is correctly chosen. We also improve the Kapron and Cook result on machine representation.Our proofs are based on essential applications of logic. We introduce a weak fragment of second order arithmetic with second order variables ranging over functions from NN which suitably characterises basic feasible functionals, and show that it is a useful tool for investigating the properties of basic feasible functionals. In particular, we provide an example how one can extract feasible programs from mathematical proofs that use nonfeasible functions.
Resumo:
In recent years the development and use of crash prediction models for roadway safety analyses have received substantial attention. These models, also known as safety performance functions (SPFs), relate the expected crash frequency of roadway elements (intersections, road segments, on-ramps) to traffic volumes and other geometric and operational characteristics. A commonly practiced approach for applying intersection SPFs is to assume that crash types occur in fixed proportions (e.g., rear-end crashes make up 20% of crashes, angle crashes 35%, and so forth) and then apply these fixed proportions to crash totals to estimate crash frequencies by type. As demonstrated in this paper, such a practice makes questionable assumptions and results in considerable error in estimating crash proportions. Through the use of rudimentary SPFs based solely on the annual average daily traffic (AADT) of major and minor roads, the homogeneity-in-proportions assumption is shown not to hold across AADT, because crash proportions vary as a function of both major and minor road AADT. For example, with minor road AADT of 400 vehicles per day, the proportion of intersecting-direction crashes decreases from about 50% with 2,000 major road AADT to about 15% with 82,000 AADT. Same-direction crashes increase from about 15% to 55% for the same comparison. The homogeneity-in-proportions assumption should be abandoned, and crash type models should be used to predict crash frequency by crash type. SPFs that use additional geometric variables would only exacerbate the problem quantified here. Comparison of models for different crash types using additional geometric variables remains the subject of future research.
Resumo:
This paper describes a secure framework for tracking applications that use the Galileo signal authentication services. First a number of limitations that affect the trust of critical tracking applications, even in presence of authenticated GNSS signals, are detailed. Requirements for secure tracking are then introduced; detailing how the integrity characteristics of the Galileo authentication could enhance the security of active tracking applications. This paper concludes with a discussion of our existing tracking technology using a Siemens TC45 GSM/GPRS module and future development utilizing our previously proposed trusted GNSS receiver.
Resumo:
Since its debut in 2001 Wikipedia has attracted the attention of many researchers in different fields. In recent years researchers in the area of ontology learning have realised the huge potential of Wikipedia as a source of semi-structured knowledge and several systems have used it as their main source of knowledge. However, the techniques used to extract semantic information vary greatly, as do the resulting ontologies. This paper introduces a framework to compare ontology learning systems that use Wikipedia as their main source of knowledge. Six prominent systems are compared and contrasted using the framework.
Resumo:
This workshop focuses upon research about the qualities of community in music and of music in community facilitated by technologically supported relationships. Generative media systems present an opportunity for users to leverage computational systems to form new relationships through interactive and collaborative experiences. Generative music and art are a relatively new phenomenon that use procedural invention as a creative technique to produce music and visual media. Early systems have demonstrated the potential to provide access to collaborative ensemble experiences for users with little formal musical or artistic expertise. This workshop examines the relational affordances of these systems evidenced by selected field data drawn from the Network Jamming Project. These generative performance systems enable access to unique ensembles with very little musical knowledge or skill and offer the possibility of interactive relationships with artists and musical knowledge through collaborative performance. In this workshop we will focus on data that highlights how these simulated experiences might lead to understandings that may be of social benefit. Conference participants will be invited to jam in real time using virtual interfaces and to evaluate purposively selected video artifacts that demonstrate different kinds of interactive relationship with artists, peers, and community and that enrich the sense of expressive self. Theoretical insights about meaningful engagement drawn from the longitudinal and cross cultural experiences will underpin the discussion and practical presentation.
Resumo:
Malaysia’s Vision 2020 for enhancing its education system includes the development of scientific literacy commencing at the primary school level. This Vision focuses on using English as the Medium of Instruction (EMI) for teaching primary science, as Malaysia has English as a Foreign Language (EFL) in its curriculum. What changes need to occur in preservice teacher education programs for learning about primary science using EMI? This paper investigates the education of Malaysian preservice teachers for learning how to teach one strand in science education (i.e., space, primary astronomy) in an English-language context. Ninety-six second-year preservice teachers from two Malaysian institutes were involved in a 16-week “Earth and Space” course, half the course involved education about primary astronomy. Seventy-five of these preservice teachers provided written responses about the course and their development as potential teachers of primary astronomy using EMI. Preservice teacher assessments and multimedia presentations provided further evidence on learning how to teach primary astronomy. Many of these preservice teachers claimed that learning to teach primary astronomy needs to focus on teaching strategies, content knowledge with easy-to-understand concepts, computer simulations (e.g., Earth Centered Universe, Stellarium, Celestia), other ICT media, and field experiences that use naked-eye observations and telescopes to investigate celestial bodies. Although generally proficient in using ICT, they claimed there were EFL barriers for learning some new terminology. Nevertheless, powerpoints, animations, videos, and simulations were identified as effective ICT tools for providing clear visual representations of abstract concepts and ways to enhance the learning process.
Resumo:
Abstract Opioid drugs, such as morphine, are among the most effective analgesics available. However, their utility for the treatment of chronic pain is limited by side effects including tolerance and dependence. Morphine acts primarily through the mu-opioid receptor (MOP-R) , which is also a target of endogenous opioids. However, unlike endogenous ligands, morphine fails to promote substantial receptor endocytosis both in vitro, and in vivo. Receptor endocytosis serves at least two important functions in signal transduction. First, desensitization and endocytosis act as an "off" switch by uncoupling receptors from G protein. Second, endocytosis functions as an "on" switch, resensitizing receptors by recycling them to the plasma membrane. Thus, both the off and on function of the MOP-R are altered in response to morphine compared to endogenous ligands. To examine whether the low degree of endocytosis induced by morphine contributes to tolerance and dependence, we generated a knockin mouse that expresses a mutant MOP-R that undergoes morphine-induced endocytosis. Morphine remains an excellent antinociceptive agent in these mice. Importantly, these mice display substantially reduced antinociceptive tolerance and physical dependence. These data suggest that opioid drugs with a pharmacological profile similar to morphine but the ability to promote endocytosis could provide analgesia while having a reduced liability for promoting tolerance and dependence
Resumo:
Multivariate volatility forecasts are an important input in many financial applications, in particular portfolio optimisation problems. Given the number of models available and the range of loss functions to discriminate between them, it is obvious that selecting the optimal forecasting model is challenging. The aim of this thesis is to thoroughly investigate how effective many commonly used statistical (MSE and QLIKE) and economic (portfolio variance and portfolio utility) loss functions are at discriminating between competing multivariate volatility forecasts. An analytical investigation of the loss functions is performed to determine whether they identify the correct forecast as the best forecast. This is followed by an extensive simulation study examines the ability of the loss functions to consistently rank forecasts, and their statistical power within tests of predictive ability. For the tests of predictive ability, the model confidence set (MCS) approach of Hansen, Lunde and Nason (2003, 2011) is employed. As well, an empirical study investigates whether simulation findings hold in a realistic setting. In light of these earlier studies, a major empirical study seeks to identify the set of superior multivariate volatility forecasting models from 43 models that use either daily squared returns or realised volatility to generate forecasts. This study also assesses how the choice of volatility proxy affects the ability of the statistical loss functions to discriminate between forecasts. Analysis of the loss functions shows that QLIKE, MSE and portfolio variance can discriminate between multivariate volatility forecasts, while portfolio utility cannot. An examination of the effective loss functions shows that they all can identify the correct forecast at a point in time, however, their ability to discriminate between competing forecasts does vary. That is, QLIKE is identified as the most effective loss function, followed by portfolio variance which is then followed by MSE. The major empirical analysis reports that the optimal set of multivariate volatility forecasting models includes forecasts generated from daily squared returns and realised volatility. Furthermore, it finds that the volatility proxy affects the statistical loss functions’ ability to discriminate between forecasts in tests of predictive ability. These findings deepen our understanding of how to choose between competing multivariate volatility forecasts.
Resumo:
Objective: To assess the cost-effectiveness of screening, isolation and decolonisation strategies in the control of methicillin-resistant Staphylococcus aureus (MRSA) in intensive care units (ICUs). Design: Economic evaluation. Setting: England and Wales. Population: ICU patients. Main outcome measures: Infections, deaths, costs, quality adjusted life years (QALYs), incremental cost-effectiveness ratios for alternative strategies, net monetary benefits (NMBs). Results: All strategies using isolation but not decolonisation improved health outcomes but increased costs. When MRSA prevalence on admission to the ICU was 5% and the willingness to pay per QALY gained was between £20,000 and £30,000, the best such strategy was to isolate only those patients at high risk of carrying MRSA (either pre-emptively or following identification by admission and weekly MRSA screening using chromogenic agar). Universal admission and weekly screening using polymerase chain reaction (PCR)-based MRSA detection coupled with isolation was unlikely to be cost-effective unless prevalence was high (10% colonised with MRSA on admission to the ICU). All decolonisation strategies improved health outcomes and reduced costs. While universal decolonisation (regardless of MRSA status) was the most cost-effective in the short-term, strategies using screening to target MRSA carriers may be preferred due to reduced risk of selecting for resistance. Amongst such targeted strategies, universal admission and weekly PCR screening coupled with decolonisation with nasal mupirocin was the most cost-effective. This finding was robust to ICU size, MRSA admission prevalence, the proportion of patients classified as high-risk, and the precise value of willingness to pay for health benefits. Conclusions: MRSA control strategies that use decolonisation are likely to be cost-saving in an ICU setting provided resistance is lacking, and combining universal PCR-based screening with decolonisation is likely to represent good value for money if untargeted decolonisation is considered unacceptable. In ICUs where decolonisation is not implemented there is insufficient evidence to support universal MRSA screening outside high prevalence settings.
Resumo:
Intuitively, any ‘bag of words’ approach in IR should benefit from taking term dependencies into account. Unfortunately, for years the results of exploiting such dependencies have been mixed or inconclusive. To improve the situation, this paper shows how the natural language properties of the target documents can be used to transform and enrich the term dependencies to more useful statistics. This is done in three steps. The term co-occurrence statistics of queries and documents are each represented by a Markov chain. The paper proves that such a chain is ergodic, and therefore its asymptotic behavior is unique, stationary, and independent of the initial state. Next, the stationary distribution is taken to model queries and documents, rather than their initial distributions. Finally, ranking is achieved following the customary language modeling paradigm. The main contribution of this paper is to argue why the asymptotic behavior of the document model is a better representation then just the document’s initial distribution. A secondary contribution is to investigate the practical application of this representation in case the queries become increasingly verbose. In the experiments (based on Lemur’s search engine substrate) the default query model was replaced by the stable distribution of the query. Just modeling the query this way already resulted in significant improvements over a standard language model baseline. The results were on a par or better than more sophisticated algorithms that use fine-tuned parameters or extensive training. Moreover, the more verbose the query, the more effective the approach seems to become.