963 resultados para strong effects
Resumo:
The completion of the third-order QCD corrections to the inclusive top-pair production cross section near threshold demonstrates that the strong dynamics is under control at the few percent level. In this paper we consider the effects of the Higgs boson on the cross section and, for the first time, combine the third-order QCD result with the third-order P-wave, the leading QED and the leading non-resonant contributions. We study the size of the different effects and investigate the sensitivity of the cross section to variations of the top-quark Yukawa coupling due to possible new physics effects.
Resumo:
Ancient lakes are often unusually species rich, mostly as a result of radiation and species-flock formation having taken place in only one or a few of many taxa present. Understanding why some taxa radiate and others do not is at the heart of understanding biodiversity. In this chapter I discuss possible explanations for disproportionally large species numbers in some cichlid fish lineages in East African Great Lakes: the halochromine cichlid fishes in Lakes Victoria and Malawi. I show that speciation rates in this group are higher than in any other lacustrine fish radiation. Against this background, I review hypotheses put forward to explain diversity in cichlid species flocks. The evolution of species diversity requires three processes: speciation, ecological radiation and anatomical diversification, and it is wrong to consider hypotheses that are relevant to different processes as alternatives to each other. The African cichlid species flocks show unusually high ecological species packing in several phylogenetic groups and unusually high speciation rates in haplochromines. Therefore, it maybe concluded that at least two evolutionary models are required to explain the difference between cichlid diversity and other fish diversity in East African Lakes: one for speciation in haplochromines and one for coexistence. Subsequently I review work on speciation in haplochromines, and in particular studies aimed at testing the hypothesis of speciation by sexual selection. Haplochromines have a polygynous mating system, conducive to sexual selection, but other polygynous cichlids are not particularly species rich. This suggests that more than just strong sexual selection is required to explain haplochromine species richness. Recent palaeoecological evidence undermines the previously popular hypotheses that explained the species richness of Lake Victoria in terms of speciation under varying natural or sexual selection regimes in satellite lakes or in isolated lake basins. I summarize experimental and comparative studies, which provide evidence for two mechanisms of sympatric speciation by disruptive sexual selection on polymorphic coloration. Such modes of speciation may explain (i) the high speciation rates in colour polymorphic lineages of haplochromine cichlids under conditions where colour variation is visible in clear water, and (ii) in combination with factors that affect population survival, the unusual species richness in haplochromine species flocks. I argue that sexual selection, if disruptive, can accelerate the pace of adaptive radiation because the resultant genetic population fragmentation allows a much increased rate of differential response to disruptive natural selection. Hence, the ecological pattern of diversity resembles that produced by disruptive natural selection, with the difference that disruptive sexual selection continues to cause (gross) speciation even after niche space is saturated. This may explain the unusually high numbers of very closely related and ecologically similar species in haplochromine species flocks. The role of disruptive sexual selection is twofold: it not only causes speciation, but also maintains reproductive isolation in sympatry between species that have evolved in sympatry or allopatry. Therefore, the maintenance of diversity in species flocks that originated through sexual selection depends on the persistence of the selection regime within the environmental signal space under which that diversity evolved.
Resumo:
Stable isotope ratios of nitrate preserved in deep ice cores are expected to provide unique and valuable information regarding paleoatmospheric processes. However, due to the post-depositional loss of nitrate in snow, this information may be erased or significantly modified by physical or photochemical processes before preservation in ice. We investigated the role of solar UV photolysis in the post-depositional modification of nitrate mass and stable isotoperatios at Dome C, Antarctica, during the austral summer of 2011/2012. Two 30 cm snow pits were filled with homogenized drifted snow from the vicinity of the base. One of these pits was covered with a plexiglass plate that transmits solar UV radiation, while the other was covered with a different plexiglass plate having a low UV transmittance. Samples were then collected from each pit at a 2–5 cm depth resolution and a 10-day frequency. At the end of the season, acomparable nitrate mass loss was observed in both pits for the top-level samples (0–7 cm) attributed to mixing with the surrounding snow. After excluding samples impacted by the mixing process, we derived an average apparent nitrogen isotopic fractionation (15" app/of role in driving the isotopic fractionation of nitrate in snow.We have estimated a purely photolytic nitrogen isotopic fractionation (15"photo) of -55.8 12.0 ‰ from the difference in the derived apparent isotopic ractionations of the two experimental fields, as both pits were exposed to similar physical processes except exposure to solar UV. This value is in close agreement with the 15" photo value of -47.9 6.8 ‰ derived in a laboratory experiment simulated for Dome C conditions (Berhanu et al., 2014). We have also observed an insensitivity of 15" with depth in the snowpack under the given experimental setup. This is due to the uniform attenuation of incoming solar UV by snow, as 15" is strongly dependent on the spectral distribution of the incoming light flux. Together with earlier work, the results presented here represent a strong body of evidence that solar UV photolysis is the most relevant post-depositional process modifying the stable isotope ratios of snow nitrate at low-accumulation sites, where many deep ice cores are drilled. Nevertheless, modeling the loss of nitrate in snow is still required before a robust interpretation of ice core records can be provided.
Resumo:
Changes in (1→3,1→4)-β-D-glucan endohydrolase (EC 3.2.1.73) protein levels were investigated in segments from second leaves of wheat (Triticum aestivum L.). The abundance of the enzyme protein markedly increased when leaf segments were incubated in the dark whereas the enzyme rapidly disappeared when dark-incubated segments were illuminated or fed with sucrose. Addition of cycloheximide (CHI) to the incubation medium led to the disappearance of previously synthesized (1→3,1→4)-β-glucanase and suppressed the dark-induced accumulation indicating that the enzyme was rather unstable. The degradation of (1→3,1→4)-β-glucanase was analyzed without the interference of de-novo synthesis in intercellular washing fluid (IWF). The loss of the enzyme protein during incubation of IWF (containing naturally present peptide hydrolases) indicated that the stability increased from pH 4 to pH 7 and that an increase in the temperature from 25 to 35 °C considerably decreased the stability. Chelating divalent cations in the IWF with o-phenanthroline also resulted in a lowered stability of the enzyme. A strong temperature effect in the range from 25 to 35 °C was also observed in wheat leaf segments. Diurnal changes in (1→3,1→4)-β-glucanase activity were followed in intact second leaves from young wheat plants. At the end of the dark period, the activity was high but constantly decreased during the light phase and remained low if the light period was extended. Activity returned to the initial level during a 10-h dark phase. During a diurnal cycle, changes in (1→3,1→4)-β-glucanase activity were associated with reciprocal changes in soluble carbohydrates. The results suggest that the synthesis and the proteolytic degradation of an apoplastic enzyme may rapidly respond to changing environmental conditions.
Resumo:
In order to find out which factors influenced the forest dynamics in northern Italy during the Holocene, a palaeoecological approach involving pollen analysis was combined with ecosystem modelling. The dynamic and distribution based forest model DisCForm was run with different input scenarios for climate, species immigration, fire, and human impact and the similarity of the simulations with the original pollen record was assessed. From the comparisons of the model output and the pollen core, it appears that immigration was most important in the first part of the Holocene, and that fire and human activity had a major influence in the second half. Species not well represented in the simulation outputs are species with a higher abundance in the past than today (Corylus), with their habitat in riparian forests (Alnus) or with a strong response to human impact (Castanea).
Resumo:
entral European grasslands vary widely in productivity and in mowing and grazing regimes. The resulting differences in competition and heterogeneity among grasslands might have direct effects on plants, but might also affect the growth and morphology of their offspring through maternal effects or adaptive evolution. To test for such transgenerational effects, we grew plants of the clonal herb Trifolium repens from seeds collected in 58 grassland sites differing in productivity and mowing and grazing intensities in different treatments: without competition, with homogeneous competition, and with heterogeneous competition. In the competition-free treatment, T. repens from more productive, less frequently mown, and less intensively grazed sites produced more vegetative offspring, but this was not the case in the other treatments. When grown among or in close proximity to competitors, T. repens plants did not show preferential growth towards open spaces (i.e., no horizontal foraging), but did show strong vertical foraging by petiole elongation. In the homogeneous competition treatment, petiole length increased with the productivity of the parental site, but this was not the case in the heterogeneous competition treatment. Moreover, petiole length increased with mowing frequency and grazing intensity of the parental site in all but the homogeneous competition treatment. In summary, although the expression of differences between plants from sites with different productivities and land-use intensities depended on the experimental treatment, our findings imply that there are transgenerational effects of land use on the morphology and performance of T. repens.
Resumo:
This study analyses the contradictory effects of decentralisation on public spending. We distinguish three dimensions of decentralisation and analyse their joint and separate effects on public spending in the Swiss cantons over 20 years. We find that overall decentralisation has a strong, significant and negative effect on the size of the public sector, thus confirming the Leviathan hypothesis. The same holds for fiscal and institutional decentralisation. However, the extent to which political processes and actors are organised locally rather than centrally actually increases central and decreases local spending. This suggests that actors behave strategically when dealing with the centre by offloading the more costly policies. The wider implication of our study is that the balance between self-rule and shared rule has implications also for the size of the overall political system.
Resumo:
Sediments can act as long-term sinks for environmental pollutants. Within the past decades, dioxin-like compounds (DLCs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) have attracted significant attention in the scientific community. To investigate the time- and concentration-dependent uptake of DLCs and PAHs in rainbow trout (Oncorhynchus mykiss) and their associated toxicological effects, we conducted exposure experiments using suspensions of three field-collected sediments from the rivers Rhine and Elbe, which were chosen to represent different contamination levels. Five serial dilutions of contaminated sediments were tested; these originated from the Prossen and Zollelbe sampling sites (both in the river Elbe, Germany) and from Ehrenbreitstein (Rhine, Germany), with lower levels of contamination. Fish were exposed to suspensions of these dilutions under semi-static conditions for 90 days. Analysis of muscle tissue by high resolution gas chromatography and mass spectrometry and of bile liquid by high-performance liquid chromatography showed that particle-bound PCDD/Fs, PCBs and PAHs were readily bioavailable from re-suspended sediments. Uptake of these contaminants and the associated toxicological effects in fish were largely proportional to their sediment concentrations. The changes in the investigated biomarkers closely reflected the different sediment contamination levels: cytochrome P450 1A mRNA expression and 7-ethoxyresorufin-O-deethylase activity in fish livers responded immediately and with high sensitivity, while increased frequencies of micronuclei and other nuclear aberrations, as well as histopathological and gross pathological lesions, were strong indicators of the potential long-term effects of re-suspension events. Our study clearly demonstrates that sediment re-suspension can lead to accumulation of PCDD/Fs and PCBs in fish, resulting in potentially adverse toxicological effects. For a sound risk assessment within the implementation of the European Water Framework Directive and related legislation, we propose a strong emphasis on sediment-bound contaminants in the context of integrated river basin management plans.
Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought
Resumo:
Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.
Resumo:
SeaWiFS (Sea-viewing Wide Field-of-view Sensor) chlorophyll data revealed strong interannual variability in fall phytoplankton dynamics in the Gulf of Maine, with 3 general features in any one year: (1) rapid chlorophyll increases in response to storm events in fall; (2) gradual chlorophyll increases in response to seasonal wind-and cooling-induced mixing that gradually deepens the mixed layer; and (3) the absence of any observable fall bloom. We applied a mixed-layer box model and a 1-dimensional physical-biological numerical model to examine the influence of physical forcing (surface wind, heat flux, and freshening) on the mixed-layer dynamics and its impact on the entrainment of deep-water nutrients and thus on the appearance of fall bloom. The model results suggest that during early fall, the surface mixed-layer depth is controlled by both wind-and cooling-induced mixing. Strong interannual variability in mixed-layer depth has a direct impact on short-and long-term vertical nutrient fluxes and thus the fall bloom. Phytoplankton concentrations over time are sensitive to initial pre-bloom profiles of nutrients. The strength of the initial stratification can affect the modeled phytoplankton concentration, while the timing of intermittent freshening events is related to the significant interannual variability of fall blooms.
Resumo:
Bilingual children's language and literacy is stronger in some domains than others. Reanalysis of data from a broad-scale study of monolingual English and bilingual Spanish-English learners in Miami provided a clear demonstration of "profile effects," where bilingual children perform at varying levels compared to monolinguals across different test types. The profile effects were strong and consistent across conditions of socioeconomic status, language in the home, and school setting (two way or English immersion). The profile effects indicated comparable performance of bilingual and monolingual children in basic reading tasks, but lower vocabulary scores for the bilinguals in both languages. Other test types showed intermediate scores in bilinguals, again with substantial consistency across groups. These profiles are interpreted as primarily due to the "distributed characteristic" of bilingual lexical knowledge, the tendency for bilingual individuals to know some words in one language but not the other and vice versa.
Resumo:
Astronauts performing extravehicular activities (EVA) are at risk for occupational hazards due to a hypobaric environment, in particular Decompression Sickness (DCS). DCS results from nitrogen gas bubble formation in body tissues and venous blood. Denitrogenation achieved through lengthy staged decompression protocols has been the mainstay of prevention of DCS in space. Due to the greater number and duration of EVAs scheduled for construction and maintenance of the International Space Station, more efficient alternatives to accomplish missions without compromising astronaut safety are desirable. ^ This multi-center, multi-phase study (NASA-Prebreathe Reduction Protocol study, or PRP) was designed to identify a shorter denitrogenation protocol that can be implemented before an EVA, based on the combination of adynamia and exercise enhanced oxygen prebreathe. Human volunteers recruited at three sites (Texas, North Carolina and Canada) underwent three different combinations (“PRP phases”) of intense and light exercise prior to decompression in an altitude chamber. The outcome variables were detection of venous gas embolism (VGE) by precordial Doppler ultrasound, and clinical manifestations of DCS. Independent variables included age, gender, body mass index, oxygen consumption peak, peak heart rate, and PRP phase. Data analysis was performed both by pooling results from all study sites, and by examining each site separately. ^ Ten percent of the subjects developed DCS and 20% showed evidence of high grade VGE. No cases of DCS occurred in one particular PRP phase with use of the combination of dual-cycle ergometry (10 minutes at 75% of VO2 peak) plus 24 minutes of light EVA exercise (p = 0.04). No significant effects were found for the remaining independent variables on the occurrence of DCS. High grade VGE showed a strong correlation with subsequent development of DCS (sensitivity, 88.2%; specificity, 87.2%). In the presence of high grade VGE, the relative risk for DCS ranged from 7.52 to 35.0. ^ In summary, a good safety level can be achieved with exercise-enhanced oxygen denitrogenation that can be generalized to the astronaut population. Exercise is beneficial in preventing DCS if a specific schedule is followed, with an individualized VO2 prescription that provides a safety level that can then be applied to space operations. Furthermore, VGE Doppler detection is a useful clinical tool for prediction of altitude DCS. Because of the small number of high grade VGE episodes, the identification of a high probability DCS situation based on the presence of high grade VGE seems justified in astronauts. ^
Resumo:
A growing number of studies show strong associations between stress and altered immune function. In vivo studies of chronic and acute stress have demonstrated that cognitive stressors are strongly correlated with high circulating levels of catecholamines (CT) and corticosteroids (CS) that are associated with changes in type-1/type-2 cytokine expression. Although individual pharmacologic doses of CS and CT can inhibit the expression of T-helper 1 (Th1, type-1 like) and promote the production of T-helper 2 (Th2, type-2 like) cytokines in antigen-specific and mitogen stimulated human leukocyte cultures in vitro, little attention has been focused on the effects of combination physiologic-stress doses of CT and CS that may be more physiologically relevant. In addition, both in-vivo and in-vitro studies suggest that the differential expression of the B7 family of costimulatory molecules CD80 and CD86 may promote the expression of type-1 or type-2 cytokines, respectively. Furthermore, corticosteroids can influence the expression of β2-adrenergic receptors in various human tissues. We therefore investigated the combined effects of physiologic-stress doses of in vitro CT and CS upon the type-1/type-2 cytokine balance and expression of B7 costimulatory molecules of human peripheral blood mononuclear cells (PBMC) as a model to study the immunomodulatory effects of physiologic stress. Results demonstrated a significant decrease in type-1 cytokine expression and a significant increase in type-2 cytokine production in our CS+CT incubated cultures when compared to either CT or CS agents alone. In addition, we demonstrated the differential expression of CD80/CD86 in favor of CD86 at the cellular and population level as determined by flow cytometry in lipopolysaccharide stimulated human Monocytes. Furthermore, we developed flow cytometry based assays to detect total β2AR in human CD4+ T-lymphocytes that demonstrated decreased expression of β2AR in mitogen stimulated CD4+ T-lymphocytes in the presence of physiologic stress levels of CS and CT as single in vitro agents, however, when both CS and CT were combined, significantly higher expression of β2AR was observed. In summary, our in vitro data suggest that both CS and CT work cooperatively to shift immunity towards type-2 responses. ^
Resumo:
Limited research has been conducted on the collection of bioaerosols and their health effects on individuals in the El Paso area. A year long study was conducted in the region to evaluate indoor bioaerosol concentrations (Mota et al., unpublished data). As part of the study, air samples were collected during each season for a year from 38 homes from the El Paso area. The main objective of the study was to assess seasonality differences in bioaerosol concentrations. The air samples were then cultured and analyzed for bacterial and fungal concentrations. As a supplement to that study, a health questionnaire was given during each seasonal air sampling to the participating resident to complete regarding their health status. The aim of this study was to evaluate the health questionnaire and assess any associations between the collected bioaerosol concentrations and the self-reported respiratory symptoms of the participating home residents. Symptom frequencies were tabulated and basic descriptive statistics, along with logistic regressions, were conducted on the relationship between “High” reporters of symptoms and bioaerosol concentrations and environmental factors. The most commonly reported symptoms by homeowners were nasal symptoms and allergies. In addition, there was evidence to support an association between indoor respirable bacteria concentrations and homeowners that report greater than or equal to 8 respiratory symptoms (OR=1.10, p=0.045). Smoking status, indoor humidity and season also displayed associations with homeowners that report greater than or equal to 8 respiratory symptoms (OR=3.3, p=0.045; OR=71.0, p=0.030; OR=7.2, 3.2, p=0.001, 0.008). With such a strong association, future assessment of symptoms, bioaerosol concentrations and environmental factors is needed to further establish their relationship. ^
Resumo:
The Ras family of small GTPases (N-, H-, and K-Ras) is a group of important signaling mediators. Ras is frequently activated in some cancers, while others maintain low level activity to achieve optimal cell growth. In cells with endogenously low levels of active Ras, increasing Ras signaling through the ERK and p38 MAPK pathways can cause growth arrest or cell death. Ras requires prenylation – the addition of a 15-carbon (farnesyl) or 20-carbon (geranylgeranyl) group – to keep the protein anchored into membranes for effective signaling. N- and K-Ras can be alternatively geranylgeranylated (GG’d) if farnesylation is inhibited but are preferentially farnesylated. Small molecule inhibitors of farnesyltransferase (FTIs) have been developed as a means to alter Ras signaling. Our initial studies with FTIs in malignant and non-malignant cells revealed FTI-induced cell cycle arrest, reduced proliferation, and increased Ras signaling. These findings led us to the hypothesis that FTI induced increased GG’d Ras. We further hypothesized that the specific effects of FTI on cell cycle and growth result from increased signal strength of GG’d Ras. Our results did show that increase in GG’d K-Ras in particular results in reduced cell viability and cell cycle arrest. Genetically engineered constructs capable of only one type of prenylation confirmed that GG’d K-Ras recapitulated the effect of FTI in 293T cells. In tumor cell lines ERK and p38 MAPK pathways were both strongly activated in response to FTI, indicating the increased activity of GG’d K-Ras results in antiproliferative signals specifically through these pathways. These results collectively indicate FTI increases active GG’d K-Ras which activates ERK and p38 MAPKs to reduced cell viability and induce cell cycle arrest in malignant cells. This is the first report that identifies increased activity of GG’d K-Ras contributes to antineoplastic effects from FTI by increasing the activity of downstream MAPKs. Our observations suggest increased GG’d K-Ras activity, rather than inhibition of farnesylated Ras, is a major source of the cytostatic and cytotoxic effects of FTI. Our data may allow for determination of which patients would benefit from FTI by excluding tumors or diseases which have strong K-Ras signaling.