792 resultados para sporting injury
Resumo:
OBJECTIVE: Most studies on alcohol as a risk factor for injuries have been mechanism specific, and few have considered several mechanisms simultaneously or reported alcohol-attributable fractions (AAFs)-which was the aim of the current study. METHOD: Data from 3,592 injured and 3,489 noninjured patients collected between January 2003 and June 2004 in the surgical ward of the emergency department of the Lausanne University Hospital (Switzerland) were analyzed. Four injury mechanisms derived from the International Classification of Diseases, 10th Revision, were considered: transportation-related injuries, falls, exposure to forces and other events, and interpersonal violence. Multinomial logistic regression models were calculated to estimate the risk relationships of different levels of alcohol consumption, using noninjured patients as quasi-controls. The AAFs were then calculated. RESULTS: Risk relationships between injury and acute consumption were found across all mechanisms, commonly resulting in dose-response relationships. Marked differences between mechanisms were observed for relative risks and AAFs, which varied between 15.2% and 33.1% and between 10.1% and 35.9%, depending on the time window of consumption (either 6 hours or 24 hours before injury, respectively). Low and medium levels of alcohol consumption generally were associated with the most AAFs. CONCLUSIONS: This study underscores the implications of even low levels of alcohol consumption on the risk of sustaining injuries through any of the mechanisms considered. Substantial AAFs are reported for each mechanism, particularly for injuries resulting from interpersonal violence. Observation of a so-called preventive paradox phenomenon is discussed, and prevention or intervention measures are described.
Resumo:
Inflammatory mechanisms are known to contribute to the pathophysiology of traumatic brain injury (TBI). Since bradykinin is one of the first mediators activated during inflammation, we investigated the role of bradykinin and its receptors in posttraumatic secondary brain damage. We subjected wild-type (WT), B(1)-, and B(2)-receptor-knockout mice to controlled cortical impact (CCI) and analyzed tissue bradykinin as well as kinin receptor mRNA and protein expression up to 48 h thereafter. Brain edema, contusion volume, and functional outcome were assessed 24 h and 7 days after CCI. Tissue bradykinin was maximally increased 2 h after trauma (P<0.01 versus sham). Kinin B(1) receptor mRNA was upregulated up to four-fold 24 h after CCI. Immunohistochemistry showed that B(1) and B(2) receptors were expressed in the brain and were significantly upregulated in the traumatic penumbra 1 to 24 h after CCI. B(2)R(-/-) mice had significantly less brain edema (-51% versus WT, 24 h; P<0.001), smaller contusion volumes ( approximately 50% versus WT 24 h and 7 d after CCI; P<0.05), and better functional outcome 7 days after TBI as compared with WT mice (P<0.05). The present results show that bradykinin and its B(2) receptors play a causal role for brain edema formation and cell death after TBI.
Resumo:
The spared nerve injury (SNI) model mimics human neuropathic pain related to peripheral nerve injury and is based upon an invasive but simple surgical procedure. Since its first description in 2000, it has displayed a remarkable development. It produces a robust, reliable and long-lasting neuropathic pain-like behaviour (allodynia and hyperalgesia) as well as the possibility of studying both injured and non-injured neuronal populations in the same spinal ganglion. Besides, variants of the SNI model have been developed in rats, mice and neonatal/young rodents, resulting in several possible angles of analysis. Therefore, the purpose of this chapter is to provide a detailed guidance regarding the SNI model and its variants, highlighting its surgical and behavioural testing specificities.
Resumo:
Prognosis after severe traumatic brain injury (TBI) is determined by the severity of initial injury and secondary cerebral damage. The main determinants of secondary cerebral damage are brain ischemia and oedema. Traumatic brain injury is a heterogeneous disease. Head CT-scan is essential in evaluating initial type of injury and severity of brain oedema. A standardised approach based on prevention and treatment of secondary cerebral damage is the only effective therapeutic strategy of severe TBI. We review the classification, pathophysiology and treatment of secondary cerebral damage after severe TBI and discuss the management of intracranial hypertension, cerebral perfusion pressure and brain ischemia.
Resumo:
Antemortem demonstration of ischemia has proved elusive in head injury because regional CBF reductions may represent hypoperfusion appropriately coupled to hypometabolism. Fifteen patients underwent positron emission tomography within 24 hours of head injury to map cerebral blood flow (CBF), cerebral oxygen metabolism (CMRO2), and oxygen extraction fraction (OEF). We estimated the volume of ischemic brain (IBV) and used the standard deviation of the OEF distribution to estimate the efficiency of coupling between CBF and CMRO2. The IBV in patients was significantly higher than controls (67 +/- 69 vs. 2 +/- 3 mL; P < 0.01). The coexistence of relative ischemia and hyperemia in some patients implies mismatching of perfusion to oxygen use. Whereas the saturation of jugular bulb blood (SjO2) correlated with the IBV (r = 0.8, P < 0.01), SjO2 values of 50% were only achieved at an IBV of 170 +/- 63 mL (mean +/- 95% CI), which equates to 13 +/- 5% of the brain. Increases in IBV correlated with a poor Glasgow Outcome Score 6 months after injury (rho = -0.6, P < 0.05). These results suggest significant ischemia within the first day after head injury. The ischemic burden represented by this "traumatic penumbra" is poorly detected by bedside clinical monitors and has significant associations with outcome.
Resumo:
Urinary indices are classically believed to allow differentiation of transient (or pre-renal) acute kidney injury (AKI) from persistent (or acute tubular necrosis) AKI. However, the data validating urinalysis in critically ill patients are weak. In the previous issue of Critical Care, Pons and colleagues demonstrate in a multicenter observational study that sodium and urea excretion fractions as well as urinary over plasma ratios performed poorly as diagnostic tests to separate such entities. This study confirms the limited diagnostic and prognostic ability of urine testing. Together with other studies, this study raises more fundamental questions about the value, meaning and pathophysiologic validity of the pre-renal AKI paradigm and suggests that AKI (like all other forms of organ injury) is a continuum of injury that cannot be neatly divided into functional (pre-renal or transient) or structural (acute tubular necrosis or persistent).
Resumo:
Switzerland, the country with the highest health expenditure per capita, is lacking data on trauma care and system planning. Recently, 12 trauma centres were designated to be reassessed through a future national trauma registry by 2015. Lausanne University Hospital launched the first Swiss trauma registry in 2008, which contains the largest database on trauma activity nationwide. METHODS: Prospective analysis of data from consecutively admitted shock room patients from 1 January 2008 to 31 December 2012. Shock room admission is based on physiology and mechanism of injury, assessed by prehospital physicians. Management follows a surgeon-led multidisciplinary approach. Injuries are coded by Association for the Advancement of Automotive Medicine (AAAM) certified coders. RESULTS: Over the 5 years, 1,599 trauma patients were admitted, predominantly males with a median age of 41.4 years and median injury severity score (ISS) of 13. Rate of ISS >15 was 42%. Principal mechanisms of injury were road traffic (40.4%) and falls (34.4%), with 91.5% blunt trauma. Principal patterns were brain (64.4%), chest (59.8%) and extremity/pelvic girdle (52.9%) injuries. Severe (abbreviated injury scale [AIS] score ≥ 3) orthopaedic injuries, defined as extremity and spine injuries together, accounted for 67.1%. Overall, 29.1% underwent immediate intervention, mainly by orthopaedics (27.3%), neurosurgeons (26.3 %) and visceral surgeons (13.9%); 43.8% underwent a surgical intervention within the first 24 hours and 59.1% during their hospitalisation. In-hospital mortality for patients with ISS >15 was 26.2%. CONCLUSION: This is the first 5-year report on trauma in Switzerland. Trauma workload was similar to other European countries. Despite high levels of healthcare, mortality exceeds published rates by >50%. Regardless of the importance of a multidisciplinary approach, trauma remains a surgical disease and needs dedicated surgical resources.
Resumo:
BACKGROUND: We reviewed the current evidence on the benefit and harm of pre-hospital tracheal intubation and mechanical ventilation after traumatic brain injury (TBI). METHODS: We conducted a systematic literature search up to December 2007 without language restriction to identify interventional and observational studies comparing pre-hospital intubation with other airway management (e.g. bag-valve-mask or oxygen administration) in patients with TBI. Information on study design, population, interventions, and outcomes was abstracted by two investigators and cross-checked by two others. Seventeen studies were included with data for 15,335 patients collected from 1985 to 2004. There were 12 retrospective analyses of trauma registries or hospital databases, three cohort studies, one case-control study, and one controlled trial. Using Brain Trauma Foundation classification of evidence, there were 14 class 3 studies, three class 2 studies, and no class 1 study. Six studies were of adults, five of children, and three of both; age groups were unclear in three studies. Maximum follow-up was up to 6 months or hospital discharge. RESULTS: In 13 studies, the unadjusted odds ratios (ORs) for an effect of pre-hospital intubation on in-hospital mortality ranged from 0.17 (favouring control interventions) to 2.43 (favouring pre-hospital intubation); adjusted ORs ranged from 0.24 to 1.42. Estimates for functional outcomes after TBI were equivocal. Three studies indicated higher risk of pneumonia associated with pre-hospital (when compared with in-hospital) intubation. CONCLUSIONS: Overall, the available evidence did not support any benefit from pre-hospital intubation and mechanical ventilation after TBI. Additional arguments need to be taken into account, including medical and procedural aspects.
Resumo:
BACKGROUND: The obective of this study was to perform a cost-effectiveness analysis comparing intermittent with continuous renal replacement therapy (IRRT versus CRRT) as initial therapy for acute kidney injury (AKI) in the intensive care unit (ICU). METHODS: Assuming some patients would potentially be eligible for either modality, we modeled life year gained, the quality-adjusted life years (QALYs) and healthcare costs for a cohort of 1000 IRRT patients and a cohort of 1000 CRRT patients. We used a 1-year, 5-year and a lifetime horizon. A Markov model with two health states for AKI survivors was designed: dialysis dependence and dialysis independence. We applied Weibull regression from published estimates to fit survival curves for CRRT and IRRT patients and to fit the proportion of dialysis dependence among CRRT and IRRT survivors. We then applied a risk ratio reported in a large retrospective cohort study to the fitted CRRT estimates in order to determine the proportion of dialysis dependence for IRRT survivors. We conducted sensitivity analyses based on a range of differences for daily implementation cost between CRRT and IRRT (base case: CRRT day $632 more expensive than IRRT day; range from $200 to $1000) and a range of risk ratios for dialysis dependence for CRRT as compared with IRRT (from 0.65 to 0.95; base case: 0.80). RESULTS: Continuous renal replacement therapy was associated with a marginally greater gain in QALY as compared with IRRT (1.093 versus 1.078). Despite higher upfront costs for CRRT in the ICU ($4046 for CRRT versus $1423 for IRRT in average), the 5-year total cost including the cost of dialysis dependence was lower for CRRT ($37 780 for CRRT versus $39 448 for IRRT on average). The base case incremental cost-effectiveness analysis showed that CRRT dominated IRRT. This dominance was confirmed by extensive sensitivity analysis. CONCLUSIONS: Initial CRRT is cost-effective compared with initial IRRT by reducing the rate of long-term dialysis dependence among critically ill AKI survivors.
Resumo:
Even 30 years after its first publication the Glasgow Coma Scale (GCS) is still used worldwide to describe and assess coma. The GCS consists of three components, the ocular, motor and verbal response to standardized stimulation, and is used as a severity of illness indicator for coma of various origins. The GCS facilitates information transfer and monitoring changes in coma. In addition, it is used as a triage tool in patients with traumatic brain injury. Its prognostic value regarding the outcome after a traumatic brain injury still lacks evidence. One of the main problems is the evaluation of the GCS in sedated, paralysed and/or intubated patients. A multitude of pseudoscores exists but a universal definition has yet to be defined.
A Study of the Relationship between Elite Athletes' Educational Development and Sporting Performance
Resumo:
More than 2,200 Iowans each year experience a traumatic brain injury that requires hospitalization. Of those, more than 750 will experience long-term disability as a result. According to a 2000 CDC report, there are an estimated 50,000 such individuals living in Iowa – a number similar to the population of Ames.
Resumo:
More than 2,200 Iowans each year experience a traumatic brain injury that requires hospitalization. Of those, more than 750 will experience long-term disability as a result. According to a 2000 CDC report, there are an estimated 50,000 such individuals living in Iowa – a number similar to the population of Ames.
Resumo:
Coming Into Focus presents a needs assessment related to Iowans with brain injury, and a state action plan to improve Iowa’s ability to meet those needs. Support for this project came from a grant from the Office of Maternal and Child Health to the Iowa Department of Public Health, Iowa’s lead agency for brain injury. The report is a description of the needs of people with brain injuries in Iowa, the status of services to meet those needs and a plan for improving Iowa’s system of supports. Brain injury can result from a skull fracture or penetration of the brain, a disease process such as tumor or infection, or a closed head injury, such as shaken baby syndrome. Traumatic brain injury is a leading cause of death and disability in children and young adults (Fick, 1997). In the United States there are as many as 2 million brain injuries per year, with 300,000 severe enough to require hospitalization. Some 50,000 lives are lost every year to TBI. Eighty to 90 thousand people have moderate to acute brain injuries that result in disabling conditions which can last a lifetime. These conditions can include physical impairments, memory defects, limited concentration, communication deficits, emotional problems and deficits in social abilities. In addition to the personal pain and challenges to survivors and their families, the financial cost of brain injuries is enormous. With traumatic brain injuries, it is estimated that in 1995 Iowa hospitals charged some $38 million for acute care for injured persons. National estimates offer a lifetime cost of $4 million for one person with brain injury (Schootman and Harlan, 1997). With this estimate, new injuries in 1995 could eventually cost over $7 billion dollars. Dramatic improvements in medicine, and the development of emergency response systems, means that more people sustaining brain injuries are being saved. How can we insure that supports are available to this emerging population? We have called the report Coming into Focus, because, despite the prevalence and the personal and financial costs to society, brain injury is poorly understood. The Iowa Department of Public Health, the Iowa Advisory Council on Head Injuries State Plan Task Force, the Brain Injury Association of Iowa and the Iowa University Affiliated Program have worked together to begin answering this question. A great deal of good information already existed. This project brought this information together, gathered new information where it was needed, and carried out a process for identifying what needs to be done in Iowa, and what the priorities will be.
Resumo:
Traumatic Brain Injury (TBI) impacts the lives of thousands of Iowans every year. TBI has been described as the “Silent Epidemic” because so often the scars are not visible to others. The affects of brain injury are cognitive, emotional, social, and can result in physical disability. In addition to the overwhelming challenges individuals with brain injury experience, families also face many difficulties in dealing with their loved one’s injury, and in navigating a service delivery system that can be confusing and frustrating. In 1998, the Iowa Department of Public Health (IDPH) conducted a comprehensive statewide needs assessment of brain injury in Iowa. This assessment led to the development of the first Iowa Plan for Brain Injury, “Coming Into Focus.” An updated state plan, the Iowa Plan for Brain Injuries 2002 – 2005, was developed, which reported on progress of the previous state plan, and outlined gaps in service delivery in Iowa. Four areas of focus were identified by the State Plan for Brain Injuries Task Force that included: 1) Expanding the Iowa Brain Injury Resource Network (IBIRN); 2) Promoting a Legislative and Policy Agenda, While Increasing Legislative Strength; 3) Enhancing Data Collection; and, 4) Increasing Funding. The IDPH utilized “Coming Into Focus” as the framework for an application to the federal TBI State Grant Program, which has resulted in more than $900,000 for plan implementation. Iowa continues to receive grant dollars through the TBI State Grant Program, which focuses on increasing capacity to serve Iowans with brain injury and their families. Highlighting the success of this grant project, in 2007 the IDPH received the federal TBI Program’s “Impacting Systems Change” Award. The Iowa Brain Injury Resource Network (IBIRN) is the product of nine years of TBI State Grant Program funding. The IBIRN was developed to ensure that Iowans got the information and support they needed after a loved one sustained a TBI. It consists of a hospital and service provider pre-discharge information and service linkage process, a resource facilitation program, a peer-to-peer volunteer support network, and a service provider training and technical assistance program. Currently over 90 public and private partners work with the IDPH and the Brain Injury Association of Iowa (BIA-IA) to administer the IBIRN system and ensure that families have a relevant and reliable location to turn for information and support. Further success was accomplished in 2006 when the Iowa legislature created the Brain Injury Services Program within the IDPH. This program consists of four components focusing on increasing access to services and improving the effectiveness of services available to individuals with TBI and their families, including: 1) HCBS Brain Injury Waiver-Eligible Component; 2) Cost Share Component; 3) Neuro-Resource Facilitation; and, 4) Enhanced Training. The Iowa legislature appropriated $2.4 million to the Brain Injury Services Program in state fiscal year (SFY) 2007, and increased that amount to $3.9 million in SFY 2008. The Cost Share Component models the HCBS Brain Injury Waiver menu of services but is available for Iowans who do not qualify functionally or financially for the Waiver. In addition, the Neuro-Resource Facilitation program links individuals with brain injury and their families to needed supports and services. The Iowa Plan for Brain Injury highlights the continued need for serving individuals with brain injury and their families. Additionally, the Plan outlines the paths of prevention and services, which will expand the current system and direct efforts into the future.