647 resultados para spinning bucket
Resumo:
Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear C-13-C-13 correlation spectra. We demonstrate on model compounds and on 1-73-(U-C-13,N-15)/74-108-(U-N-15) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7-2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear C-13-C-13 MAS correlation experiments that yield high-quality artifact-free datasets.
Resumo:
Organic dairy farms (OP; n=60) and conventional dairy farms (integrated production, IP; n=60), matched in size, location, and agricultural zone (altitude), were studied for possible differences in management, feeding, production, reproduction and udder health. OP and IP farms were similar in size (17.7 and 16.9 ha), milk quota (65900 and 70,000 kg/year), cow number (14 and 15), cow age (5.3 and 5.2 years), housing of cows of the Simmental x Red Holstein or Holstein breeds (87 and 75%; 45 and 60%), but differed significantly with respect to loose housing systems (18 and 7%), outside paddocks (98 and 75%), energy-corrected 305-d milk yield (5,695 and 6,059 kg), milk protein content (31.8 and 32.7 g/kg), use of bucket milking systems (73 and 33%), observance of regular (12-h) milking intervals (47 and 68%), routine application of the California-Mastitis-Test (10 and 28%), teat dipping after milking (25 and 43%) and blanket dry cow treatments (0 and 45%). Milk somatic cell counts on OP and IP farms (119 000 and 117,000/mL) and reproduction data were similar and there were no significant differences between OP and IP farms as concerns available feeds, planning and management of feeding. Alternative veterinary treatments were used more often on OP than IP farms (55 and 17%). Main causes for cow replacements on OP and IP farms were fertility disorders (both 45%), age (40 and 42%), sale (30 and 37%) and udder health (35 and 13%).Between OP and IP Swiss dairy farms thus relatively few larger differences were found.
Resumo:
Little is known about the magnetic resonance imaging (MRI) appearance of canine meniscal lesions. The aim of this study is to describe the MR appearance of meniscal lesions in dogs with experimentally induced cranial cruciate ligament (CCL) deficiency. The pilot study revealed dogs weighing approximately 10 kg to be too small for meniscal evaluation on low-field MRI. In the main study, dogs weighing approximately 35 kg were used. The left CCL was transected and low-field MRI was performed regularly until 13 months post-surgery. Normal menisci were defined as grade 0. Intrameniscal lesions not reaching any surface corresponded to grade 1 if focal and to grade 2 if linear or diffuse. Grade 3 lesions consisted in linear tears penetrating a meniscal surface. Grade 4 lesions included complex signal changes or meniscal distortion. Between 2 and 13 months post-surgery, all dogs developed grade 4 lesions in the medial meniscus. Most of them corresponded to longitudinal or bucket handle tears on arthroscopy and necropsy. Two dogs showed grade 3 lesions reaching the tibial surface of the lateral meniscus on MRI but not in arthroscopy. Such tears are difficult to evaluate arthroscopically; MRI provides more accurate information about the tibial meniscal surface. Grades 1 and 2 lesions could not be differentiated from presumably normal menisci with our imaging technique. An MRI grading system better adapted to canine lesions has yet to be developed. MRI is a helpful tool for the diagnosis of complete tears in the canine meniscus, especially in larger dogs.
Resumo:
The aim of the present study was to measure transit patterns of nutrients and the absorptive ability in ruminal drinkers (RDs) compared with healthy unweaned calves. The acetaminophen (paracetamol) absorption test was used to characterize the oroduodenal transit rate. Clinical examination and the analysis of various blood parameters provided supplementary information on digestive processes. Three unweaned bucket-fed calves (one RD and two healthy controls) each from seven Swiss dairy farms were included in the study. Measurements (tests 1 and 2) were performed twice at an interval of 10 days. Between tests, the feeding technique of the RDs and one control calf per farm was changed to feeding with a nipple instead of by bucket (without nipple). Acetaminophen appearance in the blood was delayed and reduced in RDs compared with the controls. Acid-base metabolism and several haematological and metabolic parameters differed markedly between RDs and healthy controls. The characteristics of the oroduodenal transit rate, absorptive abilities and clinical status in RDs were nearly normalised within 10 days of reconditioning.
Resumo:
OBJECTIVES: The aim of the present split-mouth study is to assess the peri-implant conditions around early-loaded sandblasted and acid-etched (SLA) implants, 5 years after abutment connection and to compare, in the same patients, the results obtained with a standard protocol using identical implants with a TPS surface. MATERIAL AND METHODS: Surgical procedure was performed by the same operator and was identical at test (SLA) and control (TPS) sites, in 32 healthy patients. Abutment connection was carried out at 35 N cm 6 weeks postsurgery for test sites and 12 weeks for the controls. Patients were seen regularly, for control and professional cleaning. At 60 months, clinical measures and radiographic bone changes were recorded by the same operator, blind to the type of surface of the implant, on 27 patients, as five patients were lost to follow-up. RESULTS: A total number of 106 implants were examined. No implant was lost. No significant differences were found with respect to the presence of plaque [modified plaque index (mPI) 0.27+/-0.56 vs. 0.32+/-0.54], bleeding on probing (29% vs. 32%), mean pocket depth (3.2+/-1 vs. 3.2+/-1 mm) or mean marginal bone loss (0.32+/-1.04 vs. 0.44+/-1.12 mm) between test and control. Four implants that presented 'spinning' at the time of abutment connection presented no significant differences from the rest of the test sites. CONCLUSION: The results of this prospective study confirm that SLA implants, under defined conditions, are suitable for early loading at 6 weeks in both the mandible and the maxilla. Limited implant spinning, occasionally found at abutment connection, produces no detrimental effect on the clinical outcome when properly handled.
Resumo:
Electrospinning uses electrostatic forces to create nanofibers that are far smaller than conventional fiber spinning process. Nanofibers made with chitosan were created and techniques to control fibers diameter and were well developed. However, the adsorption of porcine parvovirus (PPV) was low. PPV is a small, nonenveloped virus that is difficult to remove due to its size, 18-26 nm in diameter, and its chemical stability. To improve virus adsorption, we functionalized the nanofibers with a quaternized amine, forming N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC). This was blended with additives to increase the ability to form HTCC nanofibers. The additives changed the viscosity and conductivity of the electrospinning solution. We have successfully synthesized and functionalized HTCC nanofibers that absorb PPV. HTCC blend with graphene have the ability to remove a minimum of 99% of PPV present in solution.
Resumo:
The purpose of this study is to provide a procedure to include emissions to the atmosphere resulting from the combustion of diesel fuel during dredging operations into the decision-making process of dredging equipment selection. The proposed procedure is demonstrated for typical dredging methods and data from the Illinois Waterway as performed by the U.S. Army Corps of Engineers, Rock Island District. The equipment included in this study is a 16-inch cutterhead pipeline dredge and a mechanical bucket dredge used during the 2005 dredging season on the Illinois Waterway. Considerable effort has been put forth to identify and reduce environmental impacts from dredging operations. Though environmental impacts of dredging have been studied no efforts have been applied to the evaluation of air emissions from comparable types of dredging equipment, as in this study. By identifying the type of dredging equipment with the lowest air emissions, when cost, site conditions, and equipment availability are comparable, adverse environmental impacts can be minimized without compromising the dredging project. A total of 48 scenarios were developed by varying the dredged material quantity, transport distance, and production rates. This produced an “envelope” of results applicable to a broad range of site conditions. Total diesel fuel consumed was calculated using standard cost estimating practices as defined in the U.S. Army Corps of Engineers Construction Equipment Ownership and Operating Expense Schedule (USACE, 2005). The diesel fuel usage was estimated for all equipment used to mobilize and/or operate each dredging crew for every scenario. A Limited Life Cycle Assessment (LCA) was used to estimate the air emissions from two comparable dredging operations utilizing SimaPro LCA software. An Environmental Impact Single Score (EISS) was the SimaPro output selected for comparison with the cost per CY of dredging, potential production rates, and transport distances to identify possible decision points. The total dredging time was estimated for each dredging crew and scenario. An average hourly cost for both dredging crews was calculated based on Rock Island District 2005 dredging season records (Graham 2007/08). The results from this study confirm commonly used rules of thumb in the dredging industry by indicating that mechanical bucket dredges are better suited for long transport distances and have lower air emissions and cost per CY for smaller quantities of dredged material. In addition, the results show that a cutterhead pipeline dredge would be preferable for moderate and large volumes of dredged material when no additional booster pumps are required. Finally, the results indicate that production rates can be a significant factor when evaluating the air emissions from comparable dredging equipment.
Resumo:
The research described in this dissertation is comprised of two major parts. The first part studied the effects of asymmetric amphiphilic end groups on the thermo-response of diblock copolymers of (oligo/di(ethylene glycol) methyl ether (meth)acrylates, OEGA/DEGMA) and the hybrid nanoparticles of these copolymers with a gold nanoparticle core. Placing the more hydrophilic end group on the more hydrophilic block significantly increased the cloud point compared to a similar copolymer composition with the end group placement reversed. For a given composition, the cloud point was shifted by as much as 28 °C depending on the placement of end groups. This is a much stronger effect than either changing the hydrophilic/hydrophobic block ratio or replacing the hydrophilic acrylate monomer with the equivalent methacrylate monomer. The temperature range of the coil-globule transition was also altered. Binding these diblock copolymers to a gold core decreased the cloud point by 5-15 °C and narrowed the temperature range of the coil-globule transition. The effects were more pronounced when the gold core was bound to the less hydrophilic block. Given the limited numbers of monomers that are approved safe for in vivo use, employing amphiphilic end group placement is a useful tool to tune a thermo-response without otherwise changing the copolymer composition. The second part of the dissertation investigated the production of value-added nanomaterials from two biorefinery “wastes”: lignin and peptidoglycan. Different solvents and spinning methods (melt-, wet-, and electro-spinning) were tested to make lignin/cellulose blended and carbonized fibers. Only electro-spinning yielded fibers having a small enough diameter for efficient carbonization ( Peptidoglycan (a bacterial cell wall material) was copolymerized with poly-(3-hydroxybutyrate), a common polyhydroxyalkanoate produced by bacteria with the objective of determining if a useful material could be obtained with a less rigorous work-up on harvesting polyhydroxyalkanoates. The copolyesteramide product having 25 wt.% peptidoglycan from a highly purified peptidoglycan increased thermal stability by 100-200 °C compared to the poly-(3-hydroxybutyrate) control, while a less pure peptidoglycan, harvested from B. megaterium (ATCC 11561), gave a 25-50 °C increase in thermal stability. Both copolymers absorbed more moisture than pure poly-(3-hydroxybutyrate). The results suggest that a less rigorously harvested and purified polyhydroxyalkanoate might be useful for some applications.
Resumo:
We report the first in situ measurements of neutral deuterium originating in the local interstellar medium (LISM) in Earth’s orbit. These measurements were performed with the IBEX-Lo camera on NASA’s interstellar boundary explorer (IBEX) satellite. All data from the spring observation periods of 2009 through 2011 have been analysed. In the three years of the IBEX mission time, the observation geometry and orbit allowed for a total observation time of 115.3 days for the LISM. However, the effects of the spinning spacecraft and the stepping through 8 energy channels mean that we are only observing the interstellar wind for a total time of 1.44 days, in which 2 counts for interstellar deuterium were collected. We report here a conservative number, because a possibility of systematic error or additional noise, though eliminated in our analysis to the best of our knowledge, only supports detection at a 1-sigma level. From these observations, we derive a ratio D/H = (5.8 ± 4.4) × 10-4 at 1 AU. After modelling the transport and loss of D and H from the termination shock to Earth’s orbit, we find that our result of D/HLISM = (1.6 ± 1.2) × 10-5 agrees with D/HLIC = (1.6 ± 0.4) × 10-5 for the local interstellar cloud. This weak interstellar signal is extracted from a strong terrestrial background signal consisting of sputter products from the sensor’s conversion surface. As reference, we accurately measure the terrestrial D/H ratio in these sputtered products and then discriminate this terrestrial background source. Because of the diminishing D and H signal at Earth’s orbit during the rising solar activity due to photoionisation losses and increased photon pressure, our result demonstrates that in situ measurements of interstellar deuterium in the inner heliosphere are only possible during solar minimum conditions.
Resumo:
The cultivation of dessert apples has to meet the consumer's increasing demand for high fruit quality and a sustainable mostly residue-free production while ensuring a competitive agricultural productivity. It is therefore of great interest to know the impact of different cultivation methods on the fruit quality and the chemical composition, respectively. Previous studies have demonstrated the feasibility of High Resolution Magic Angle Spinning (HR-MAS) NMR spectroscopy directly performed on apple tissue as analytical tool for metabonomic studies. In this study, HR-MAS NMR spectroscopy is applied to apple tissue to analyze the metabolic profiles of apples grown under 3 different cultivation methods. Golden Delicious apples were grown applying organic (Bio), integrated (IP) and low-input (LI) plant protection strategies. A total of 70 1H HR-MAS NMR spectra were analyzed by means of principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). Apples derived from Bio-production could be well separated from the two other cultivation methods applying both, PCA and PLS-DA. Apples obtained from integrated (IP) and low-input (LI) production discriminated when taking the third PLS-component into account. The identified chemical composition and the compounds responsible for the separation, i.e. the PLS-loadings, are discussed. The results are compared with fruit quality parameters assessed by conventional methods. The present study demonstrates the potential of HR-MAS NMR spectroscopy of fruit tissue as analytical tool for finding markers for specific fruit production conditions like the cultivation method.
Resumo:
High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.
Resumo:
We report on a comprehensive signal processing procedure for very low signal levels for the measurement of neutral deuterium in the local interstellar medium from a spacecraft in Earth orbit. The deuterium measurements were performed with the IBEX-Lo camera on NASA’s Interstellar Boundary Explorer (IBEX) satellite. Our analysis technique for these data consists of creating a mass relation in three-dimensional time of flight space to accurately determine the position of the predicted D events, to precisely model the tail of the H events in the region where the H tail events are near the expected D events, and then to separate the H tail from the observations to extract the very faint D signal. This interstellar D signal, which is expected to be a few counts per year, is extracted from a strong terrestrial background signal, consisting of sputter products from the sensor’s conversion surface. As reference we accurately measure the terrestrial D/H ratio in these sputtered products and then discriminate this terrestrial background source. During the three years of the mission time when the deuterium signal was visible to IBEX, the observation geometry and orbit allowed for a total observation time of 115.3 days. Because of the spinning of the spacecraft and the stepping through eight energy channels the actual observing time of the interstellar wind was only 1.44 days. With the optimised data analysis we found three counts that could be attributed to interstellar deuterium. These results update our earlier work.
Resumo:
1H high resolution magic angle spinning (HR-MAS) NMR spectroscopy was applied in combination with multivariate statistical analyses to study the metabolic response of whole cells to the treatment with a hexacationic ruthenium metallaprism [1]6+ as potential anticancer drug. Human ovarian cancer cells (A2780), the corresponding cisplatin resistant cells (A2780cisR), and human embryonic kidney cells (HEK-293) were each incubated for 24 h and 72 h with [1]6+ and compared to untreated cells. Different responses were obtained depending on the cell type and incubation time. Most pronounced changes were found for lipids, choline containing compounds, glutamate and glutathione, nucleotide sugars, lactate, and some amino acids. Possible contributions of these metabolites to physiologic processes are discussed. The time-dependent metabolic response patterns suggest that A2780 cells on one hand and HEK-293 cells and A2780cisR cells on the other hand may follow different cell death pathways and exist in different temporal stages thereof.
Resumo:
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Resumo:
We construct several classes of worldvolume effective actions for black holes by integrating out spatial sections of the worldvolume geometry of asymptotically flat black branes. This provides a generalisation of the blackfold approach for higher-dimensional black holes and yields a map between different effective theories, which we exploit by obtaining new hydrodynamic and elastic transport coefficients via simple integrations. Using Euclidean minimal surfaces in order to decouple the fluid dynamics on different sections of the worldvolume, we obtain local effective theories for ultraspinning Myers-Perry branes and helicoidal black branes, described in terms of a stress-energy tensor, particle currents and non-trivial boost vectors. We then study in detail and present novel compact and non-compact geometries for black hole horizons in higher-dimensional asymptotically flat space-time. These include doubly-spinning black rings, black helicoids and helicoidal p-branes as well as helicoidal black rings and helicoidal black tori in D ≥ 6.