914 resultados para spatial and temporal patterns


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crossroads, crucibles and refuges are three words that may describe natural coastal lagoon environments. The words refer to the complex mix of marine and terrestrial influences, prolonged dilution due to the semi-enclosed nature and the function of a habitat for highly diverse plant and animal communities, some of which are endangered. To attain a realistic picture of the present situation, high vulnerability to anthropogenic impact should be added to the description. As the sea floor in coastal lagoons is usually entirely photic, macrophyte primary production is accentuated compared with open sea environments. There is, however, a lack of proper knowledge on the importance of vegetation for the general functioning of coastal lagoon ecosystems. The aim of this thesis is to assess the role of macrophyte diversity, cover and species identity over temporal and spatial scales for lagoon functions, and to determine which steering factors primarily restrict the qualitative and quantitative composition of vegetation in coastal lagoons. The results are linked to patterns of related trophic levels and the indicative potential of vegetation for assessment of general conditions in coastal lagoons is evaluated. This thesis includes five field studies conducted in flads and glo-flads in the brackish water northern Baltic Sea. Flads and glo-flads are defined as a Baltic variety of coastal lagoons, which due to an inlet threshold and post-glacial landuplift slowly will be isolated from the open sea. This process shrinks inlet size, increases exposure and water retention, and is called habitat isolation. The studied coastal lagoons are situated in the archipelago areas of the eastern coast of Sweden, the Åland Islands and the south-west mainland of Finland, where land-uplift amounts to ca. 5 mm/ per year. Out of 400 evaluated sites, a total of 70 lagoons varying in inlet size, archipelago position and anthropogenic influence to cover for essential environmental variation were chosen for further inventory. Vegetation composition, cover and richness were measured together with several hydrographic and morphometric variables in the lagoons both seasonally and inter-annually to cover for general regional, local and temporal patterns influencing lagoon and vegetation development. On smaller species-level scale, the effects of macrophyte species identity and richness for the fish habitat function were studied by examining the influence of plant interaction on juvenile fish diversity. Thus, the active election of plant monoand polycultures by fish and the diversity of fish in the respective culture were examined and related to plant height and water depth. The lagoons and vegetation composition were found to experience a regime shift initiated by increased habitat isolation along with land-uplift. Vegetation composition altered, richness decreased and cover increased forming a less isolated and more isolated regime, named the vascular plant regime and charophyte regime, respectively according to the dominant vegetation. As total phosphorus in the water, turbidity and the impact of regional influences decreased in parallel, the dominance of charophytes and increasing cover seemed to buffer and stabilize conditions in the charophyte regime and indicated an increased functional role of vegetation for the lagoon ecosystem. The regime pattern was unaffected by geographical differences, while strong anthropogenic impact seemed to distort the pattern due to loss of especially Chara tomentosa L. in the charophyte regime. The regimes were further found unperturbed by short-time temporal fluctuations. In fact the seasonal and inter-annual dynamics reinforced the functional difference between the regimes by the increasing role of vegetation along habitat isolation and the resemblance to lake environments for the charophyte regime. For instance, greater total phosphorus and chlorophyll a concentrations in the water in the beginning of the season in the charophyte regime compared with the vascular plant regime presented a steeper reduction to even lower values than in the vascular plant regime along the season. Despite a regional importance and positive relationship of macrophyte diversity in relation to trophic diversity, species identity was underlined in the results of this thesis, especially with decreasing spatial scale. This result was supported partly by the increased role of charophytes in the functioning of the charophyte regime, but even more explicitly by the species-specific preference of juvenile fish for tall macrophyte monocultures. On a smaller species-level scale, tall plant species in monoculture seemed to be able to increase their length, indicating that negative selection forms preferred habitat structures, which increase fish diversity. This negative relationship between plant and fish diversity suggest a shift in diversity patterns among trohic levels on smaller scale. Thus, as diversity patterns seem complex and diverge among spatial scales, it might be ambiguous to extend the understanding of diversity relationships from one trophic level to the other. All together, the regime shift described here presents similarities to the regime development in marine lagoon environments and shallow lakes subjected to nutrient enrichment. However, due to nutrient buffering by vegetation with increased isolation and water retention as a consequence of the inlet threshold, the development seems opposite to the course along an eutrophication gradient described in marine lagoons lacking an inlet threshold, where the role of vegetation decreases. Thus, the results imply devastating consequences of inlet dredging (decreasing isolation) in terms of vegetation loss and nutrient release, and call for increased conservational supervision. Especially the red listed charophytes would suffer negatively from such interference and the consequences are likely to also deteriorate juvenile fish production. The fact that a new species to Finland, Chara connivens Salzm. Ex. Braun 1835 was discovered during this study further indicates a potential of the lagoons serving as refuges for rare species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bedrock channels have been considered challenging geomorphic settings for the application of numerical models. Bedrock fluvial systems exhibit boundaries that are typically less mobile than alluvial systems, yet they are still dynamic systems with a high degree of spatial and temporal variability. To understand the variability of fluvial systems, numerical models have been developed to quantify flow magnitudes and patterns as the driving force for geomorphic change. Two types of numerical model were assessed for their efficacy in examining the bedrock channel system consisting of a high gradient portion of the Twenty Mile Creek in the Niagara Region of Ontario, Canada. A one-dimensional (1-D) flow model that utilizes energy equations, HEC RAS, was used to determine velocity distributions through the study reach for the mean annual flood (MAF), the 100-year return flood and the 1,000-year return flood. A two-dimensional (2-D) flow model that makes use of Navier-Stokes equations, RMA2, was created with the same objectives. The 2-D modeling effort was not successful due to the spatial complexity of the system (high slope and high variance). The successful 1 -D model runs were further extended using very high resolution geospatial interpolations inherent to the HEC RAS extension, HEC geoRAS. The modeled velocity data then formed the basis for the creation of a geomorphological analysis that focused upon large particles (boulders) and the forces needed to mobilize them. Several existing boulders were examined by collecting detailed measurements to derive three-dimensional physical models for the application of fluid and solid mechanics to predict movement in the study reach. An imaginary unit cuboid (1 metre by 1 metre by 1 metre) boulder was also envisioned to determine the general propensity for the movement of such a boulder through the bedrock system. The efforts and findings of this study provide a standardized means for the assessment of large particle movement in a bedrock fluvial system. Further efforts may expand upon this standardization by modeling differing boulder configurations (platy boulders, etc.) at a high level of resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La variabilité spatiale et temporelle de l’écoulement en rivière contribue à créer une mosaïque d’habitat dynamique qui soutient la diversité écologique. Une des questions fondamentales en écohydraulique est de déterminer quelles sont les échelles spatiales et temporelles de variation de l’habitat les plus importantes pour les organismes à divers stades de vie. L’objectif général de la thèse consiste à examiner les liens entre la variabilité de l’habitat et le comportement du saumon Atlantique juvénile. Plus spécifiquement, trois thèmes sont abordés : la turbulence en tant que variable d’habitat du poisson, les échelles spatiales et temporelles de sélection de l’habitat et la variabilité individuelle du comportement du poisson. À l’aide de données empiriques détaillées et d’analyses statistiques variées, nos objectifs étaient de 1) quantifier les liens causaux entre les variables d’habitat du poisson « usuelles » et les propriétés turbulentes à échelles multiples; 2) tester l’utilisation d’un chenal portatif pour analyser l’effet des propriétés turbulentes sur les probabilités de capture de proie et du comportement alimentaire des saumons juvéniles; 3) analyser les échelles spatiales et temporelles de sélection de l’habitat dans un tronçon l’été et l’automne; 4) examiner la variation individuelle saisonnière et journalière des patrons d’activité, d’utilisation de l’habitat et de leur interaction; 5) investiguer la variation individuelle du comportement spatial en relation aux fluctuations environnementales. La thèse procure une caractérisation détaillée de la turbulence dans les mouilles et les seuils et montre que la capacité des variables d’habitat du poisson usuelles à expliquer les propriétés turbulentes est relativement basse, surtout dans les petites échelles, mais varie de façon importante entre les unités morphologiques. D’un point de vue pratique, ce niveau de complexité suggère que la turbulence devrait être considérée comme une variable écologique distincte. Dans une deuxième expérience, en utilisant un chenal portatif in situ, nous n’avons pas confirmé de façon concluante, ni écarté l’effet de la turbulence sur la probabilité de capture des proies, mais avons observé une sélection préférentielle de localisations où la turbulence était relativement faible. La sélection d’habitats de faible turbulence a aussi été observée en conditions naturelles dans une étude basée sur des observations pour laquelle 66 poissons ont été marqués à l’aide de transpondeurs passifs et suivis pendant trois mois dans un tronçon de rivière à l’aide d’un réseau d’antennes enfouies dans le lit. La sélection de l’habitat était dépendante de l’échelle d’observation. Les poissons étaient associés aux profondeurs modérées à micro-échelle, mais aussi à des profondeurs plus élevées à l’échelle des patchs. De plus, l’étendue d’habitats utilisés a augmenté de façon asymptotique avec l’échelle temporelle. L’échelle d’une heure a été considérée comme optimale pour décrire l’habitat utilisé dans une journée et l’échelle de trois jours pour décrire l’habitat utilisé dans un mois. Le suivi individuel a révélé une forte variabilité inter-individuelle des patrons d’activité, certains individus étant principalement nocturnes alors que d’autres ont fréquemment changé de patrons d’activité. Les changements de patrons d’activité étaient liés aux variables environnementales, mais aussi à l’utilisation de l’habitat des individus, ce qui pourrait signifier que l’utilisation d’habitats suboptimaux engendre la nécessité d’augmenter l’activité diurne, quand l’apport alimentaire et le risque de prédation sont plus élevés. La variabilité inter-individuelle élevée a aussi été observée dans le comportement spatial. La plupart des poissons ont présenté une faible mobilité la plupart des jours, mais ont occasionnellement effectué des mouvements de forte amplitude. En fait, la variabilité inter-individuelle a compté pour seulement 12-17% de la variabilité totale de la mobilité des poissons. Ces résultats questionnent la prémisse que la population soit composée de fractions d’individus sédentaires et mobiles. La variation individuelle journalière suggère que la mobilité est une réponse à des changements des conditions plutôt qu’à un trait de comportement individuel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leaf-cutting ants consume up to 10% of canopy leaves in the foraging area of their colony and therefore represent a key perturbation in the nutrient cycle of tropical forests. We used a chronosequence of nest sites on Barro, Colorado Island, Panama, to assess the influence of leaf-cutting ants (Atta colombica) on nutrient availability in a neotropical rainforest. Twelve nest sites were sampled, including active nests, recently abandoned nests (<1 year) and long-abandoned nests (>1 year). Waste material discarded by the ants down-slope from the nests contained large concentrations of nitrogen and phosphorus in both total and soluble forms, but decomposed within one year after the nests were abandoned. Despite this, soil under the waste material contained high concentrations of nitrate and ammonium that persisted after the disappearance of the waste, although soluble phosphate returned to background concentrations within one year of nest abandonment. Fine roots were more abundant in soil under waste than control soils up to one year after nest abandonment, but were not significantly different for older sites. In contrast to the waste dumps, soil above the underground nest chambers consistently contained lower nutrient concentrations than control soils, although this was not statistically significant. We conclude that the 'islands of fertility' created by leaf-cutting ants provide a nutritional benefit to nearby plants for less than one year after nest abandonment in the moist tropical environment of Barro Colorado Island. Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an assessment of the nitrogen and phosphorus dynamics of the River Kennet in the south east of England. The Kennet catchment (1200 km(2)) is a predominantly groundwater fed river impacted by agricultural and sewage sources of nutrient (nitrogen and phosphorus) pollution. The results from a suite of simulation models are integrated to assess the key spatial and temporal variations in the nitrogen (N) and phosphorus (P) chemistry, and the influence of changes in phosphorous inputs from a Sewage Treatment Works on the macrophyte and epiphyte growth patterns. The models used are the Export Co-efficient model, the Integrated Nitrogen in Catchments model, and a new model of in-stream phosphorus and macrophyte dynamics: the 'Kennet' model. The paper concludes with a discussion on the present state of knowledge regarding the water quality functioning, future research needs regarding environmental modelling and the use of models as management tools for large, nutrient impacted riverine systems. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extent to which the four-dimensional variational data assimilation (4DVAR) is able to use information about the time evolution of the atmosphere to infer the vertical spatial structure of baroclinic weather systems is investigated. The singular value decomposition (SVD) of the 4DVAR observability matrix is introduced as a novel technique to examine the spatial structure of analysis increments. Specific results are illustrated using 4DVAR analyses and SVD within an idealized 2D Eady model setting. Three different aspects are investigated. The first aspect considers correcting errors that result in normal-mode growth or decay. The results show that 4DVAR performs well at correcting growing errors but not decaying errors. Although it is possible for 4DVAR to correct decaying errors, the assimilation of observations can be detrimental to a forecast because 4DVAR is likely to add growing errors instead of correcting decaying errors. The second aspect shows that the singular values of the observability matrix are a useful tool to identify the optimal spatial and temporal locations for the observations. The results show that the ability to extract the time-evolution information can be maximized by placing the observations far apart in time. The third aspect considers correcting errors that result in nonmodal rapid growth. 4DVAR is able to use the model dynamics to infer some of the vertical structure. However, the specification of the case-dependent background error variances plays a crucial role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial distribution of aerosol chemical composition and the evolution of the Organic Aerosol (OA) fraction is investigated based upon airborne measurements of aerosol chemical composition in the planetary boundary layer across Europe. Sub-micron aerosol chemical composition was measured using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS). A range of sampling conditions were evaluated, including relatively clean background conditions, polluted conditions in North-Western Europe and the near-field to far-field outflow from such conditions. Ammonium nitrate and OA were found to be the dominant chemical components of the sub-micron aerosol burden, with mass fractions ranging from 20--50% each. Ammonium nitrate was found to dominate in North-Western Europe during episodes of high pollution, reflecting the enhanced NO_x and ammonia sources in this region. OA was ubiquitous across Europe and concentrations generally exceeded sulphate by 30--160%. A factor analysis of the OA burden was performed in order to probe the evolution across this large range of spatial and temporal scales. Two separate Oxygenated Organic Aerosol (OOA) components were identified; one representing an aged-OOA, termed Low Volatility-OOA and another representing fresher-OOA, termed Semi Volatile-OOA on the basis of their mass spectral similarity to previous studies. The factors derived from different flights were not chemically the same but rather reflect the range of OA composition sampled during a particular flight. Significant chemical processing of the OA was observed downwind of major sources in North-Western Europe, with the LV-OOA component becoming increasingly dominant as the distance from source and photochemical processing increased. The measurements suggest that the aging of OA can be viewed as a continuum, with a progression from a less oxidised, semi-volatile component to a highly oxidised, less-volatile component. Substantial amounts of pollution were observed far downwind of continental Europe, with OA and ammonium nitrate being the major constituents of the sub-micron aerosol burden. Such anthropogenically perturbed air masses can significantly perturb regional climate far downwind of major source regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Listeners can attend to one of several simultaneous messages by tracking one speaker’s voice characteristics. Using differences in the location of sounds in a room, we ask how well cues arising from spatial position compete with these characteristics. Listeners decided which of two simultaneous target words belonged in an attended “context” phrase when it was played simultaneously with a different “distracter” context. Talker difference was in competition with position difference, so the response indicates which cue‐type the listener was tracking. Spatial position was found to override talker difference in dichotic conditions when the talkers are similar (male). The salience of cues associated with differences in sounds, bearings decreased with distance between listener and sources. These cues are more effective binaurally. However, there appear to be other cues that increase in salience with distance between sounds. This increase is more prominent in diotic conditions, indicating that these cues are largely monaural. Distances between spectra calculated using a gammatone filterbank (with ERB‐spaced CFs) of the room’s impulse responses at different locations were computed, and comparison with listeners’ responses suggested some slight monaural loudness cues, but also monaural “timbre” cues arising from the temporaland spectral‐envelope differences in the speech from different locations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel approach is presented for combining spatial and temporal detail from newly available TRMM-based data sets to derive hourly rainfall intensities at 1-km spatial resolution for hydrological modelling applications. Time series of rainfall intensities derived from 3-hourly 0.25° TRMM 3B42 data are merged with a 1-km gridded rainfall climatology based on TRMM 2B31 data to account for the sub-grid spatial distribution of rainfall intensities within coarse-scale 0.25° grid cells. The method is implemented for two dryland catchments in Tunisia and Senegal, and validated against gauge data. The outcomes of the validation show that the spatially disaggregated and intensity corrected TRMM time series more closely approximate ground-based measurements than non-corrected data. The method introduced here enables the generation of rainfall intensity time series with realistic temporal and spatial detail for dynamic modelling of runoff and infiltration processes that are especially important to water resource management in arid regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes recent variations of the North Atlantic eddy-driven jet stream and analyzes the mean response of the jet to anthropogenic forcing in climate models. Jet stream changes are analyzed both using a direct measure of the near-surface westerly wind maximum and using an EOF-based approach. This allows jet stream changes to be related to the widely used leading patterns of variability: the North Atlantic Oscillation (NAO) and East Atlantic (EA) pattern. Viewed in NAO–EA state space, isolines of jet latitude and speed resemble a distorted polar coordinate system, highlighting the dependence of the jet stream quantities on both spatial patterns. Some differences in the results of the two methods are discussed, but both approaches agree on the general characteristics of the climate models. While there is some agreement between models on a poleward shift of the jet stream in response to anthropogenic forcing, there is still considerable spread between different model projections, especially in winter. Furthermore, the model responses to forcing are often weaker than their biases when compared to a reanalysis. Diagnoses of jet stream changes can be sensitive to the methodologies used, and several aspects of this are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extratropical upper troposphere and lower stratosphere (Ex-UTLS) is a transition region between the stratosphere and the troposphere. The Ex-UTLS includes the tropopause, a strong static stability gradient and dynamic barrier to transport. The barrier is reflected in tracer profiles. This region exhibits complex dynamical, radiative, and chemical characteristics that place stringent spatial and temporal requirements on observing and modeling systems. The Ex-UTLS couples the stratosphere to the troposphere through chemical constituent transport (of, e.g., ozone), by dynamically linking the stratospheric circulation with tropospheric wave patterns, and via radiative processes tied to optically thick clouds and clear-sky gradients of radiatively active gases. A comprehensive picture of the Ex-UTLS is presented that brings together different definitions of the tropopause, focusing on observed dynamical and chemical structure and their coupling. This integral view recognizes that thermal gradients and dynamic barriers are necessarily linked, that these barriers inhibit mixing and give rise to specific trace gas distributions, and that there are radiative feedbacks that help maintain this structure. The impacts of 21st century anthropogenic changes to the atmosphere due to ozone recovery and climate change will be felt in the Ex-UTLS, and recent simulations of these effects are summarized and placed in context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quasi-optical interferometric technique capable of measuring antenna phase patterns without the need for a heterodyne receiver is presented. It is particularly suited to the characterization of terahertz antennas feeding power detectors or mixers employing quasi-optical local oscillator injection. Examples of recorded antenna phase patterns at frequencies of 1.4 and 2.5 THz using homodyne detectors are presented. To our knowledge, these are the highest frequency antenna phase patterns ever recovered. Knowledge of both the amplitude and phase patterns in the far field enable a Gauss-Hermite or Gauss-Laguerre beam-mode analysis to be carried out for the antenna, of importance in performance optimization calculations, such as antenna gain and beam efficiency parameters at the design and prototype stage of antenna development. A full description of the beam would also be required if the antenna is to be used to feed a quasi-optical system in the near-field to far-field transition region. This situation could often arise when the device is fitted directly at the back of telescopes in flying observatories. A further benefit of the proposed technique is simplicity for characterizing systems in situ, an advantage of considerable importance as in many situations, the components may not be removable for further characterization once assembled. The proposed methodology is generic and should be useful across the wider sensing community, e.g., in single detector acoustic imaging or in adaptive imaging array applications. Furthermore, it is applicable across other frequencies of the EM spectrum, provided adequate spatial and temporal phase stability of the source can be maintained throughout the measurement process. Phase information retrieval is also of importance to emergent research areas, such as band-gap structure characterization, meta-materials research, electromagnetic cloaking, slow light, super-lens design as well as near-field and virtual imaging applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a model calibrated to Khao Yai National Park in Thailand, this paper highlights the importance of generating explicitly spatial and temporal data for developing management plans for tropical protected forests. Spatial and temporal cost-benefit analysis should account for the interactions between different land uses – such as the benefits of contiguous areas of preserved land and edge effects – and the realities of villagers living near forests who rely on extracted resources. By taking a temporal perspective, this paper provides a rare empirical assessment of the importance of quasi-option values when determining optimal management plans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The internal variability and coupling between the stratosphere and troposphere in CCMVal‐2 chemistry‐climate models are evaluated through analysis of the annular mode patterns of variability. Computation of the annular modes in long data sets with secular trends requires refinement of the standard definition of the annular mode, and a more robust procedure that allows for slowly varying trends is established and verified. The spatial and temporal structure of the models’ annular modes is then compared with that of reanalyses. As a whole, the models capture the key features of observed intraseasonal variability, including the sharp vertical gradients in structure between stratosphere and troposphere, the asymmetries in the seasonal cycle between the Northern and Southern hemispheres, and the coupling between the polar stratospheric vortices and tropospheric midlatitude jets. It is also found that the annular mode variability changes little in time throughout simulations of the 21st century. There are, however, both common biases and significant differences in performance in the models. In the troposphere, the annular mode in models is generally too persistent, particularly in the Southern Hemisphere summer, a bias similar to that found in CMIP3 coupled climate models. In the stratosphere, the periods of peak variance and coupling with the troposphere are delayed by about a month in both hemispheres. The relationship between increased variability of the stratosphere and increased persistence in the troposphere suggests that some tropospheric biases may be related to stratospheric biases and that a well‐simulated stratosphere can improve simulation of tropospheric intraseasonal variability.