994 resultados para spaceborne laser range finder
Resumo:
The STAR Collaboration at the Relativistic Heavy Ion Collider presents a systematic study of high-transverse-momentum charged-di-hadron correlations at small azimuthal pair separation Delta phi in d+Au and central Au+Au collisions at s(NN)=200 GeV. Significant correlated yield for pairs with large longitudinal separation Delta eta is observed in central Au+Au collisions, in contrast to d+Au collisions. The associated yield distribution in Delta eta x Delta phi can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component that is narrow in Delta phi and depends only weakly on Delta eta, the ""ridge."" Using two systematically independent determinations of the background normalization and shape, finite ridge yield is found to persist for trigger p(t)>6 GeV/c, indicating that it is correlated with jet production. The transverse-momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range (2 < p(t)< 4 GeV/c).
Resumo:
Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au + Au and p + p collisions at root s(NN) = 200 GeV. Strong short- and long-range correlations (LRC) are seen in central Au + Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short-range correlations are observed in peripheral Au + Au collisions. Both the dual parton model (DPM) and the color glass condensate (CGC) predict the existence of the long-range correlations. In the DPM, the fluctuation in the number of elementary (parton) inelastic collisions produces the LRC. In the CGC, longitudinal color flux tubes generate the LRC. The data are in qualitative agreement with the predictions of the DPM and indicate the presence of multiple parton interactions.
Resumo:
In this work, we investigated the temperature dependence of short and long-range ferroelectric ordering in Pb(0.55)La(0.30)TiO(3) relaxor composition. High-resolution x-ray powder diffraction measurements revealed a clear spontaneous macroscopic cubic-to-tetragonal phase transition in the PLT relaxor sample at similar to 60 K below the maximum of the dielectric constant peak (T(m)). Indeed, the x-ray diffraction (XRD) data showed that at 300 K (above T(m) but below the Burns temperature, T(B)) the long-range order structure corresponds to a macroscopic cubic symmetry, space group number 221 (Pm-3m), whereas the data collected at 20 K revealed a macroscopic tetragonal symmetry, space group number 99 (P4mm) with c/a=1.0078, that is comparable to that of a normal ferroelectric. These results show that for samples with tetragonal composition, the long-range ferroelectric order may be recovered spontaneously at cryogenics temperatures, in contrast to ferroelectric samples with rhombohedral symmetry. On the other hand, x-ray absorption spectroscopy investigations intriguingly revealed the existence of local tetragonal disorder around Ti atoms for temperatures far below T(m) and above T(B), for which the sample presents macroscopic tetragonal and cubic symmetries, respectively. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3431024]
Resumo:
Citrus canker is a serious disease caused by Xanthomonas citri subsp. citri bacteria, which infects citrus plants (Citrus spp.) leading to large economic losses in citrus production worldwide. In this work, laser induced fluorescence spectroscopy (LIF) was investigated as a diagnostic technique for citrus canker disease in citrus trees at an orchard using a portable optical fiber based spectrometer. For comparison we have applied LIF to leaves contaminated with citrus canker, citrus scab, citrus variegates chlorosis, and Huanglongbing (HLB, Greening). In order to reduce the noise in the data, we collected spectra from ten leaves with visual symptoms of diseases and from five healthy leaves per plant. This procedure is carried out in order to minimize the environmental effect on the spectrum (water and nutrient supply) of each plant. Our results show that this method presents a high sensitivity (similar to 90%), however it does present a low specificity (similar to 70%) for citrus canker diagnostic. We believe that such poor performance is due to the fact that the optical fiber collects light from only a small part of the leaf. Such results may be improved using the fluorescence imaging technique on the whole leaf. (C) 2010 Optical Society of America
Resumo:
Ti K-edge x-ray absorption near-edge spectroscopy (XANES) and Raman scattering were used to study the solid solution effects on the structural and vibrational properties of Pb(1-x)Ba(x)Zr(0.65)Ti(0.35)O(3) with 0.0 < x < 0.40. Compared with x-ray diffraction techniques, which indicates that the average crystal symmetry changes with the substitution of Pb by Ba ions or with temperature variations for samples with x=0.00, 0.10, and 0.20, local structural probes such as XANES and Raman scattering results demonstrate that at local level, the symmetry changes are much less prominent. Theoretical XANES spectra calculation corroborate with the interpretation of the XANES experimental data.
Resumo:
We report the microwave dielectric properties and photoluminescence of undoped and europium oxide doped Ta(2)O(5) fibers, grown by laser heated pedestal growth technique. The effects of Eu(2)O(3) doping (1-3 mol %) on the structural, optical, and dielectric properties were investigated. At a frequency of 5 GHz, the undoped material exhibits a dielectric permittivity of 21 and for Eu(2)O(3) doped Ta(2)O(5) samples it increases, reaching up to 36 for the highest doping concentration. Nevertheless, the dielectric losses maintain a very low value. For this wide band gap oxide, Eu(3+) optical activation was achieved and the emission is observed up to room temperature. Thus, the transparency and high permittivity make this material promising for electronic devices and microwave applications. (c) 2008 American Institute of Physics.
Resumo:
We report on the femtosecond-laser micromachining of poly(methyl methacrylate) (PMMA) films doped with nonlinear azoaromatic chromophores: Disperse Red 1, Disperse Red 13 and Disperse Orange 3. We study the conditions for controlling chromophore degradation during the micromachining of PMMA doped with each chromophore. Furthermore, we successfully used fs-micromachining to fabricate optical waveguides within a bulk sample of PMMA doped with these azochromophores. (c) 2008 Optical Society of America.
Resumo:
The Z-scan and thermal-lens techniques have been used to obtain the energy transfer upconversion parameter in Nd(3+)-doped materials. A comparison between these methods is done, showing that they are independent and provide similar results. Moreover, the advantages and applicability of each one are also discussed. The results point to these approaches as valuable alternative methods because of their sensitivity, which allows measurements to be performed in a pump-power regime without causing damage to the investigated material. (C) 2009 Optical Society of America
Resumo:
Time-resolved Z-scan measurements were performed in a Nd(3+)-doped Sr(0.61)Ba(0.39)Nb(2)O(6) laser crystal through ferroelectric phase transition. Both the differences in electronic polarizability (Delta alpha(p)) and cross section (Delta sigma) of the neodymium ions have been found to be strongly modified in the surroundings of the transition temperature. This observed unusual behavior is concluded to be caused by the remarkable influence that the structural changes associated to the ferro-to-paraelectric phase transition has on the 4f -> 5d transition probabilities. The maximum polarizability change value Delta alpha(p)=1.2x10(-25) cm(3) obtained at room temperature is the largest ever measured for a Nd(3+)-doped transparent material.
Resumo:
The temperature and compositional dependences of thermo- optical properties of neodymium doped yttrium aluminum garnet (YAG) crystals and fine grain ceramics have been systematically investigated by means of time- resolved thermal lens spectrometry. We have found that Nd:YAG ceramics show a reduced thermal diffusivity compared to Nd:YAG single crystals in the complete temperature range investigated (80-300 K). The analysis of the time- resolved luminescent properties of Nd(3+) has revealed that the reduction in the phonon mean free path taking place in Nd:YAG ceramics cannot be associated with an increment in the density of lattice defects, indicating that phonon scattering at grain boundaries is the origin of the observed reduction in the thermal diffusivity of Nd: YAG ceramics. Finally, our results showed the ability of the time- resolved thermal lens to determine and optimize the thermo- optical properties of Nd: YAG ceramic based lasers. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2975335]
Resumo:
The fast and reversible phase transition mechanism between crystalline and amorphous phases of Ge(2)Sb(2)Te(5) has been in debate for several years. Through employing first-principles density functional theory calculations, we identify a direct structural link between the metastable crystalline and amorphous phases. The phase transition is driven by the displacement of Ge atoms along the rocksalt [111] direction from stable octahedron to high energy unstable tetrahedron sites close to the intrinsic vacancy regions, which generates a high energy intermediate phase between metastable and amorphous phases. Due to the instability of Ge at the tetrahedron sites, the Ge atoms naturally shift away from those sites, giving rise to the formation of local-ordered fourfold motifs and the long-range structural disorder. Intrinsic vacancies, which originate from Sb(2)Te(3), lower the energy barrier for Ge displacements, and hence, their distribution plays an important role in the phase transition. The high energy intermediate configuration can be obtained experimentally by applying an intense laser beam, which overcomes the thermodynamic barrier from the octahedron to tetrahedron sites. The high figure of merit of Ge(2)Sb(2)Te(5) is achieved from the optimal combination of intrinsic vacancies provided by Sb(2)Te(3) and the instability of the tetrahedron sites provided by GeTe.
Resumo:
Objective: The purpose of this study was to evaluate in vitro the Knoop microhardness (Knoop hardness number [KHN]) and the degree of conversion using FT-Raman spectroscopy of a light-cured microhybrid resin composite (Z350-3M-ESPE) Vita shade A3 photopolymerized with a halogen lamp or an argon ion laser. Background Data: Optimal polymerization of resin-based dental materials is important for longevity of restorations in dentistry. Materials and Methods: Thirty specimens were prepared and inserted into a disc-shaped polytetrafluoroethylene mold that was 2.0 mm thick and 3 mm in diameter. The specimens were divided into three groups (n = 10 each). Group 1 (G1) was light-cured for 20 sec with an Optilux 501 halogen light with an intensity of 1000 mW/cm(2). Group 2 (G2) was photopolymerized with an argon laser with a power of 150 mW for 10 sec, and group 3 (G3) was photopolymerized with an argon laser at 200 mW of power for 10 sec. All specimens were stored in distilled water for 24 h at 37 degrees C and kept in lightproof containers. For the KHN test five indentations were made and a depth of 100 mu m was maintained in each specimen. One hundred and fifty readings were obtained using a 25-g load for 45 sec. The degree of conversion values were measured by Raman spectroscopy. KHN and degree of conversion values were obtained on opposite sides of the irradiated surface. KHN and degree of conversion data were analyzed by one-way ANOVA and Tukey tests with statistical significance set at p < 0.05. Results: The results of KHN testing were G1 = 37.428 +/- 4.765; G2 = 23.588 +/- 6.269; and G3 = 21.652 +/- 4.393. The calculated degrees of conversion (DC%) were G1 = 48.57 +/- 2.11; G2 = 43.71 +/- 3.93; and G3 = 44.19 +/- 2.71. Conclusions: Polymerization with the halogen lamp ( G1) attained higher microhardness values than polymerization with the argon laser at power levels of 150 and 200 mW; there was no difference in hardness between the two argon laser groups. The results showed no statistically significant different degrees of conversion for the polymerization of composite samples with the two light sources tested.
Resumo:
It has been demonstrated that laser induced breakdown spectrometry (LIBS) can be used as an alternative method for the determination of macro (P, K. Ca, Mg) and micronutrients (B, Fe, Cu, Mn, Zn) in pellets of plant materials. However, information is required regarding the sample preparation for plant analysis by LIBS. In this work, methods involving cryogenic grinding and planetary ball milling were evaluated for leaves comminution before pellets preparation. The particle sizes were associated to chemical sample properties such as fiber and cellulose contents, as well as to pellets porosity and density. The pellets were ablated at 30 different sites by applying 25 laser pulses per site (Nd:YAG@1064 nm, 5 ns, 10 Hz, 25J cm(-2)). The plasma emission collected by lenses was directed through an optical fiber towards a high resolution echelle spectrometer equipped with an ICCD. Delay time and integration time gate were fixed at 2.0 and 4.5 mu s, respectively. Experiments carried out with pellets of sugarcane, orange tree and soy leaves showed a significant effect of the plant species for choosing the most appropriate grinding conditions. By using ball milling with agate materials, 20 min grinding for orange tree and soy, and 60 min for sugarcane leaves led to particle size distributions generally lower than 75 mu m. Cryogenic grinding yielded similar particle size distributions after 10 min for orange tree, 20 min for soy and 30 min for sugarcane leaves. There was up to 50% emission signal enhancement on LIBS measurements for most elements by improving particle size distribution and consequently the pellet porosity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The application of laser induced breakdown spectrometry (LIBS) aiming the direct analysis of plant materials is a great challenge that still needs efforts for its development and validation. In this way, a series of experimental approaches has been carried out in order to show that LIBS can be used as an alternative method to wet acid digestions based methods for analysis of agricultural and environmental samples. The large amount of information provided by LIBS spectra for these complex samples increases the difficulties for selecting the most appropriated wavelengths for each analyte. Some applications have suggested that improvements in both accuracy and precision can be achieved by the application of multivariate calibration in LIBS data when compared to the univariate regression developed with line emission intensities. In the present work, the performance of univariate and multivariate calibration, based on partial least squares regression (PLSR), was compared for analysis of pellets of plant materials made from an appropriate mixture of cryogenically ground samples with cellulose as the binding agent. The development of a specific PLSR model for each analyte and the selection of spectral regions containing only lines of the analyte of interest were the best conditions for the analysis. In this particular application, these models showed a similar performance. but PLSR seemed to be more robust due to a lower occurrence of outliers in comparison to the univariate method. Data suggests that efforts dealing with sample presentation and fitness of standards for LIBS analysis must be done in order to fulfill the boundary conditions for matrix independent development and validation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work is to demonstrate the feasibility of laser induced breakdown spectrometry (LIBS) for the determination of macro and micronutrients in multielement tablets. The experimental setup was designed by using a laser Q-switch (Nd:YAG, 10 Hz, lambda = 1064 nm) and the emission signals were collected by lenses into an optical fiber coupled to an echelle spectrometer equipped with a high-resolution intensified charge coupled device (ICCD). Tablets were cryogenically ground and thereafter pelletized before LIBS analysis. Calibration curves were made by employing samples and mixtures of commercial multielement tablets with binders at different ratios. Best results were achieved by using the following experimental conditions: 29 J cm(-2) laser fluence, 165 mm lens to sample distance (f = 200 mm), 2.0 mu s delay time, 5.0 mu s integration time and 5 accumulated laser pulses. In general, the results obtained by the proposed LIBS procedure were in agreement with those obtained by ICP OES from the corresponding acid digests and coefficients variation of LIBS measurements varied from 2 to 16%. The metrological figures of merit indicate that LIBS fits for the intended purposes, and can be recommended for the analysis of multielement tablets and similar matrices aiming the determination of Ca, Cu, Fe, Mg, Mn, P and Zn.