963 resultados para software quality attribute
Resumo:
Computed tomography (CT) is a valuable technology to the healthcare enterprise as evidenced by the more than 70 million CT exams performed every year. As a result, CT has become the largest contributor to population doses amongst all medical imaging modalities that utilize man-made ionizing radiation. Acknowledging the fact that ionizing radiation poses a health risk, there exists the need to strike a balance between diagnostic benefit and radiation dose. Thus, to ensure that CT scanners are optimally used in the clinic, an understanding and characterization of image quality and radiation dose are essential.
The state-of-the-art in both image quality characterization and radiation dose estimation in CT are dependent on phantom based measurements reflective of systems and protocols. For image quality characterization, measurements are performed on inserts imbedded in static phantoms and the results are ascribed to clinical CT images. However, the key objective for image quality assessment should be its quantification in clinical images; that is the only characterization of image quality that clinically matters as it is most directly related to the actual quality of clinical images. Moreover, for dose estimation, phantom based dose metrics, such as CT dose index (CTDI) and size specific dose estimates (SSDE), are measured by the scanner and referenced as an indicator for radiation exposure. However, CTDI and SSDE are surrogates for dose, rather than dose per-se.
Currently there are several software packages that track the CTDI and SSDE associated with individual CT examinations. This is primarily the result of two causes. The first is due to bureaucracies and governments pressuring clinics and hospitals to monitor the radiation exposure to individuals in our society. The second is due to the personal concerns of patients who are curious about the health risks associated with the ionizing radiation exposure they receive as a result of their diagnostic procedures.
An idea that resonates with clinical imaging physicists is that patients come to the clinic to acquire quality images so they can receive a proper diagnosis, not to be exposed to ionizing radiation. Thus, while it is important to monitor the dose to patients undergoing CT examinations, it is equally, if not more important to monitor the image quality of the clinical images generated by the CT scanners throughout the hospital.
The purposes of the work presented in this thesis are threefold: (1) to develop and validate a fully automated technique to measure spatial resolution in clinical CT images, (2) to develop and validate a fully automated technique to measure image contrast in clinical CT images, and (3) to develop a fully automated technique to estimate radiation dose (not surrogates for dose) from a variety of clinical CT protocols.
Resumo:
X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].
Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.
As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.
More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.
With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.
Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.
With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.
Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.
Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.
Resumo:
The dietary intake of sodium chloride has increased considerably over the last few decades due to changes in the human diet. This higher intake has been linked to a number of diseases including hypertension and other cardiovascular diseases. Numerous international health agencies, as well as the food industry, have now recommended a salt intake level of 5-6 g daily, approximately half of the average current daily intake level. Cereal products, and in particular bread, are a major source of salt in the Western diet. Therefore, any reduction in the level of salt in bread could have a major impact on global health. However, salt is a critical ingredient in bread production, and its reduction can have a deleterious effect on the production process as well as on the final bread quality characteristics such as shelf-life, bread volume and sensory characteristics, all deviating from the bakers’ and consumers’ expectations. This work addresses the feasibility of NaCl reduction in wheat bread focusing on options to compensate NaCl with the use of functional sourdoughs. Three strains were used for the application of low-salt bread; L. amylovorus DSM19280, W. cibaria MG1 and L. reuteri FF2hh2. The multifunctional strain L. reuteri FF2hh2 was tested the first time and its application could be demonstrated successfully. The functionalities were based on the production of exopolysaccharides as well as the production of antifungal compounds. While the exopolysaccharides, mainly high molecular dextrans, positively influenced mainly bread loaf volume, crumb structure and staling rate, the strains producing antifungal compounds prolonged the microbial shelf life significantly and compensated the lack of salt. The impact on the sensory characteristics of bread were evaluated by descriptive sensory evaluation. The increase in surface area as well as the presence of organic acids impacted significantly on the flavour profile of the sourdough bread samples. The flavour attribute “salt” could be enhanced by sourdough addition and increased the salty perception. Furthermore, a trained sensory panel evaluated for the first time the impact of yeast activity, based on different salt and yeast concentrations, on the volatile aroma profile of bread crumb samples. The analytical measurements using high resolution gas chromatography and proton-transfer-reaction mass spectrometry (PTR-MS) resulted in significantly different results based on different yeast activities. Nevertheless, the extent of the result could not be recognised by the sensory panel analysing the odour profile of the bread crumb samples. Hence, the consumer cannot recognised low-salt bread by its odour. The use of sourdough is a natural option to overcome the broad range of technological issues caused by salt reduction and also a more popular alternative compared to existing chemical salt replacers.
Resumo:
The extractive industry is characterized by high levels of risk and uncertainty. These attributes create challenges when applying traditional accounting concepts (such as the revenue recognition and matching concepts) to the preparation of financial statements in the industry. The International Accounting Standards Board (2010) states that the objective of general purpose financial statements is to provide useful financial information to assist the capital allocation decisions of existing and potential providers of capital. The usefulness of information is defined as being relevant and faithfully represented so as to best aid in the investment decisions of capital providers. Value relevance research utilizes adaptations of the Ohlson (1995) to assess the attribute of value relevance which is one part of the attributes resulting in useful information. This study firstly examines the value relevance of the financial information disclosed in the financial reports of extractive firms. The findings reveal that the value relevance of information disclosed in the financial reports depends on the circumstances of the firm including sector, size and profitability. Traditional accounting concepts such as the matching concept can be ineffective when applied to small firms who are primarily engaged in nonproduction activities that involve significant levels of uncertainty such as exploration activities or the development of sites. Standard setting bodies such as the International Accounting Standards Board and the Financial Accounting Standards Board have addressed the financial reporting challenges in the extractive industry by allowing a significant amount of accounting flexibility in industryspecific accounting standards, particularly in relation to the accounting treatment of exploration and evaluation expenditure. Therefore, secondly this study examines whether the choice of exploration accounting policy has an effect on the value relevance of information disclosed in the financial reports. The findings show that, in general, the Successful Efforts method produces value relevant information in the financial reports of profitable extractive firms. However, specifically in the oil & gas sector, the Full Cost method produces value relevant asset disclosures if the firm is lossmaking. This indicates that investors in production and non-production orientated firms have different information needs and these needs cannot be simultaneously fulfilled by a single accounting policy. In the mining sector, a preference by large profitable mining companies towards a more conservative policy than either the Full Cost or Successful Efforts methods does not result in more value relevant information being disclosed in the financial reports. This finding supports the fact that the qualitative characteristic of prudence is a form of bias which has a downward effect on asset values. The third aspect of this study is an examination of the effect of corporate governance on the value relevance of disclosures made in the financial reports of extractive firms. The findings show that the key factor influencing the value relevance of financial information is the ability of the directors to select accounting policies which reflect the economic substance of the particular circumstances facing the firms in an effective way. Corporate governance is found to have an effect on value relevance, particularly in the oil & gas sector. However, there is no significant difference between the exploration accounting policy choices made by directors of firms with good systems of corporate governance and those with weak systems of corporate governance.
Resumo:
Eight universities have collaborated in an Erasmus+ funded project to create a lean process to enhance self-evaluation and accreditation through peer alliance and cooperation. Central to this process is the partnering of two institutions as critical friends, based on prior selfevaluations of specific programmes to identify particular criteria for improvement. A pairing algorithm matches two institutions based on their respective self-evaluation scores. It ensures there are significant differences in key criteria that are mutually beneficial for future programme development and enhancement. The ensuing meetings between critical friends have been designated as ‘cross-sparring’. This paper focuses on a case-study of the crosssparring and resulting enhancement outcomes between Umeå University and Queen’s University Belfast, and their respective Masters programmes in Software Engineering and Mechanical Engineering. The collaborative experiences of the process are evaluated, reported, discussed and conclusions provided on the efficacy of this particular application of cross-sparring.
Resumo:
[EN]Polygonal meshes are powerful structures to represent geometric information of the Earth’s surface. In particular, triangle meshes have been massively used as a reliable way to efficiently represent the land surface with real time responses in virtual navigation. In this work we present new ideas for the underlying treatment of a mesh that improve efficiency and quality in the navigation.
Resumo:
New technologies appear each moment and its use can result in countless benefits for that they directly use and for all the society as well. In this direction, the State also can use the technologies of the information and communication to improve the level of rendering of services to the citizens, to give more quality of life to the society and to optimize the public expense, centering it in the main necessities. For this, it has many research on politics of Electronic Government (e-Gov) and its main effect for the citizen and the society as a whole. This research studies the concept of Electronic Government and wishes to understand the process of implementation of Free Softwares in the agencies of the Direct Administration in the Rio Grande do Norte. Moreover, it deepens the analysis to identify if its implantation results in reduction of cost for the state treasury and intends to identify the Free Software participation in the Administration and the bases of the politics of Electronic Government in this State. Through qualitative interviews with technologies coordinators and managers in 3 State Secretaries it could be raised the ways that come being trod for the Government in order to endow the State with technological capacity. It was perceived that the Rio Grande do Norte still is an immature State in relation to practical of electronic government (e-Gov) and with Free Softwares, where few agencies have factual and viable initiatives in this area. It still lacks of a strategical definition of the paper of Technology and more investments in infrastructure of staff and equipment. One also observed advances as the creation of the normative agency, the CETIC (State Advice of Technology of the Information and Communication), the Managing Plan of Technology that provide a necessary diagnosis with the situation how much Technology in the State and considered diverse goals for the area, the accomplishment of a course of after-graduation for managers of Technology and the training in BrOffice (OppenOffice) for 1120 public servers
Resumo:
Context: Obfuscation is a common technique used to protect software against mali- cious reverse engineering. Obfuscators manipulate the source code to make it harder to analyze and more difficult to understand for the attacker. Although different ob- fuscation algorithms and implementations are available, they have never been directly compared in a large scale study. Aim: This paper aims at evaluating and quantifying the effect of several different obfuscation implementations (both open source and commercial), to help developers and project manager to decide which one could be adopted. Method: In this study we applied 44 obfuscations to 18 subject applications covering a total of 4 millions lines of code. The effectiveness of these source code obfuscations has been measured using 10 code metrics, considering modularity, size and complexity of code. Results: Results show that some of the considered obfuscations are effective in mak- ing code metrics change substantially from original to obfuscated code, although this change (called potency of the obfuscation) is different on different metrics. In the pa- per we recommend which obfuscations to select, given the security requirements of the software to be protected.
Resumo:
Purpose: To evaluate if physical measures of noise predict image quality at high and low noise levels. Method: Twenty-four images were acquired on a DR system using a Pehamed DIGRAD phantom at three kVp settings (60, 70 and 81) across a range of mAs values. The image acquisition setup consisted of 14 cm of PMMA slabs with the phantom placed in the middle at 120 cm SID. Signal-to-noise ratio (SNR) and Contrast-tonoise ratio (CNR) were calculated for each of the images using ImageJ software and 14 observers performed image scoring. Images were scored according to the observer`s evaluation of objects visualized within the phantom. Results: The R2 values of the non-linear relationship between objective visibility score and CNR (60kVp R2 = 0.902; 70Kvp R2 = 0.913; 80kVp R2 = 0.757) demonstrate a better fit for all 3 kVp settings than the linear R2 values. As CNR increases for all kVp settings the Object Visibility also increases. The largest increase for SNR at low exposure values (up to 2 mGy) is observed at 60kVp, when compared with 70 or 81kVp.CNR response to exposure is similar. Pearson r was calculated to assess the correlation between Score, OV, SNR and CNR. None of the correlations reached a level of statistical significance (p>0.01). Conclusion: For object visibility and SNR, tube potential variations may play a role in object visibility. Higher energy X-ray beam settings give lower SNR but higher object visibility. Object visibility and CNR at all three tube potentials are similar, resulting in a strong positive relationship between CNR and object visibility score. At low doses the impact of radiographic noise does not have a strong influence on object visibility scores because in noisy images objects could still be identified.
Resumo:
Large component-based systems are often built from many of the same components. As individual component-based software systems are developed, tested and maintained, these shared components are repeatedly manipulated. As a result there are often significant overlaps and synergies across and among the different test efforts of different component-based systems. However, in practice, testers of different systems rarely collaborate, taking a test-all-by-yourself approach. As a result, redundant effort is spent testing common components, and important information that could be used to improve testing quality is lost. The goal of this research is to demonstrate that, if done properly, testers of shared software components can save effort by avoiding redundant work, and can improve the test effectiveness for each component as well as for each component-based software system by using information obtained when testing across multiple components. To achieve this goal I have developed collaborative testing techniques and tools for developers and testers of component-based systems with shared components, applied the techniques to subject systems, and evaluated the cost and effectiveness of applying the techniques. The dissertation research is organized in three parts. First, I investigated current testing practices for component-based software systems to find the testing overlap and synergy we conjectured exists. Second, I designed and implemented infrastructure and related tools to facilitate communication and data sharing between testers. Third, I designed two testing processes to implement different collaborative testing algorithms and applied them to large actively developed software systems. This dissertation has shown the benefits of collaborative testing across component developers who share their components. With collaborative testing, researchers can design algorithms and tools to support collaboration processes, achieve better efficiency in testing configurations, and discover inter-component compatibility faults within a minimal time window after they are introduced.
Resumo:
An earlier Case-based Reasoning (CBR) approach developed by the authors for educational course timetabling problems employed structured cases to represent the complex relationships between courses. Previous solved cases represented by attribute graphs were organized hierarchically into a decision tree. The retrieval searches for graph isomorphism among these attribute graphs. In this paper, the approach is further developed to solve a wider range of problems. We also attempt to retrieve those graphs that have common similar structures but also have some differences. Costs that are assigned to these differences have an input upon the similarity measure. A large number of experiments are performed consisting of different randomly produced timetabling problems and the results presented here strongly indicate that a CBR approach could provide a significant step forward in the development of automated system to solve difficult timetabling problems. They show that using relatively little effort, we can retrieve these structurally similar cases to provide high quality timetables for new timetabling problems.
Resumo:
Embedded software systems in vehicles are of rapidly increasing commercial importance for the automotive industry. Current systems employ a static run-time environment; due to the difficulty and cost involved in the development of dynamic systems in a high-integrity embedded control context. A dynamic system, referring to the system configuration, would greatly increase the flexibility of the offered functionality and enable customised software configuration for individual vehicles, adding customer value through plug-and-play capability, and increased quality due to its inherent ability to adjust to changes in hardware and software. We envisage an automotive system containing a variety of components, from a multitude of organizations, not necessarily known at development time. The system dynamically adapts its configuration to suit the run-time system constraints. This paper presents our vision for future automotive control systems that will be regarded in an EU research project, referred to as DySCAS (Dynamically Self-Configuring Automotive Systems). We propose a self-configuring vehicular control system architecture, with capabilities that include automatic discovery and inclusion of new devices, self-optimisation to best-use the processing, storage and communication resources available, self-diagnostics and ultimately self-healing. Such an architecture has benefits extending to reduced development and maintenance costs, improved passenger safety and comfort, and flexible owner customisation. Specifically, this paper addresses the following issues: The state of the art of embedded software systems in vehicles, emphasising the current limitations arising from fixed run-time configurations; and the benefits and challenges of dynamic configuration, giving rise to opportunities for self-healing, self-optimisation, and the automatic inclusion of users’ Consumer Electronic (CE) devices. Our proposal for a dynamically reconfigurable automotive software system platform is outlined and a typical use-case is presented as an example to exemplify the benefits of the envisioned dynamic capabilities.
Resumo:
Requirements specification has long been recognized as critical activity in software development processes because of its impact on project risks when poorly performed. A large amount of studies addresses theoretical aspects, propositions of techniques, and recommended practices for Requirements Engineering (RE). To be successful, RE have to ensure that the specified requirements are complete and correct what means that all intents of the stakeholders in a given business context are covered by the requirements and that no unnecessary requirement was introduced. However, the accurate capture the business intents of the stakeholders remains a challenge and it is a major factor of software project failures. This master’s dissertation presents a novel method referred to as “Problem-Based SRS” aiming at improving the quality of the Software Requirements Specification (SRS) in the sense that the stated requirements provide suitable answers to real customer ́s businesses issues. In this approach, the knowledge about the software requirements is constructed from the knowledge about the customer ́s problems. Problem-Based SRS consists in an organization of activities and outcome objects through a process that contains five main steps. It aims at supporting the software requirements engineering team to systematically analyze the business context and specify the software requirements, taking also into account a first glance and vision of the software. The quality aspects of the specifications are evaluated using traceability techniques and axiomatic design principles. The cases studies conducted and presented in this document point out that the proposed method can contribute significantly to improve the software requirements specification.
Resumo:
Nanotechnology has revolutionised humanity's capability in building microscopic systems by manipulating materials on a molecular and atomic scale. Nan-osystems are becoming increasingly smaller and more complex from the chemical perspective which increases the demand for microscopic characterisation techniques. Among others, transmission electron microscopy (TEM) is an indispensable tool that is increasingly used to study the structures of nanosystems down to the molecular and atomic scale. However, despite the effectivity of this tool, it can only provide 2-dimensional projection (shadow) images of the 3D structure, leaving the 3-dimensional information hidden which can lead to incomplete or erroneous characterization. One very promising inspection method is Electron Tomography (ET), which is rapidly becoming an important tool to explore the 3D nano-world. ET provides (sub-)nanometer resolution in all three dimensions of the sample under investigation. However, the fidelity of the ET tomogram that is achieved by current ET reconstruction procedures remains a major challenge. This thesis addresses the assessment and advancement of electron tomographic methods to enable high-fidelity three-dimensional investigations. A quality assessment investigation was conducted to provide a quality quantitative analysis of the main established ET reconstruction algorithms and to study the influence of the experimental conditions on the quality of the reconstructed ET tomogram. Regular shaped nanoparticles were used as a ground-truth for this study. It is concluded that the fidelity of the post-reconstruction quantitative analysis and segmentation is limited, mainly by the fidelity of the reconstructed ET tomogram. This motivates the development of an improved tomographic reconstruction process. In this thesis, a novel ET method was proposed, named dictionary learning electron tomography (DLET). DLET is based on the recent mathematical theorem of compressed sensing (CS) which employs the sparsity of ET tomograms to enable accurate reconstruction from undersampled (S)TEM tilt series. DLET learns the sparsifying transform (dictionary) in an adaptive way and reconstructs the tomogram simultaneously from highly undersampled tilt series. In this method, the sparsity is applied on overlapping image patches favouring local structures. Furthermore, the dictionary is adapted to the specific tomogram instance, thereby favouring better sparsity and consequently higher quality reconstructions. The reconstruction algorithm is based on an alternating procedure that learns the sparsifying dictionary and employs it to remove artifacts and noise in one step, and then restores the tomogram data in the other step. Simulation and real ET experiments of several morphologies are performed with a variety of setups. Reconstruction results validate its efficiency in both noiseless and noisy cases and show that it yields an improved reconstruction quality with fast convergence. The proposed method enables the recovery of high-fidelity information without the need to worry about what sparsifying transform to select or whether the images used strictly follow the pre-conditions of a certain transform (e.g. strictly piecewise constant for Total Variation minimisation). This can also avoid artifacts that can be introduced by specific sparsifying transforms (e.g. the staircase artifacts the may result when using Total Variation minimisation). Moreover, this thesis shows how reliable elementally sensitive tomography using EELS is possible with the aid of both appropriate use of Dual electron energy loss spectroscopy (DualEELS) and the DLET compressed sensing algorithm to make the best use of the limited data volume and signal to noise inherent in core-loss electron energy loss spectroscopy (EELS) from nanoparticles of an industrially important material. Taken together, the results presented in this thesis demonstrates how high-fidelity ET reconstructions can be achieved using a compressed sensing approach.