931 resultados para small-angle X-ray scattering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wet silica gels with similar to 1.4 x 10(-3) mol SiO2/cm(3) and similar to 92 vol% liquid phase were obtained from sonohydrolysis of tetraethoxysilane (TEOS) with different additions of isopropyl alcohol ( IPA). The IPA/TEOS molar ratio R was changed from 0 to 4. Aerogels were obtained by supercritical CO2 extraction. The samples were analyzed by small-angle X-ray scattering (SAXS) and nitrogen adsorption. The wet gels exhibit mass fractal structure with fractal dimension increasing from D similar to 2.10 to D similar to 2.22, characteristic length xi decreasing from similar to 9.5 to similar to 6.9 nm, as R increases from 0 to 4, and an estimated characteristic length for the primary silica particles lower than similar to 0.3 nm. The supercritical process apparently eliminates a fraction of the porosity, increasing the mass fractal dimension and shortening the fractality domain in the mesopore region. The fundamental role of isopropyl alcohol on the structure of the resulting aerogels is to decrease the porosity and the pore mean size as R changes from pure TEOS to R = 4. A secondary structure appearing in the micropore region of the aerogels can be described as a mass/surface fractal structure, with correlated mass fractal dimension D-m similar to 2.7 and surface fractal dimension D-s similar to 2.3, as inferred from SAXS and nitrogen adsorption data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composites of aerosil fumed silica and tetraethoxysilane-derived sonogel were prepared by changing the aerosil content between 0 and 30wt% with respect to the silica content in the original tetraethoxysilane (TEOS). The structural characteristics were studied by density and Vickers microhardness measurements and analyzed by means of small-angle X-ray scattering (SAXS). The structure of the composite aerosil/TEOS-derived sonogel can be described as inclusions of the aerosil particles embedded in the matrix of the TEOS-derived sonogel, forming an aerosil/matrix interfacial surface inside the composite. The weakening of the bonding of aerosil/matrix interface, as suggested by the reported decrease in microhardness, increases the fracture toughness of the composite. The additive effect of the aerosil particles on the structure of the sonogel accounts for the increase of the bulk density and reduction of the specific surface of the composite. Some internal structure associated with the microclusters making up the sonogels is apparent from systematic deviations from Porod's law found in the system with small aerosil contents. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of doping by europium triflate on the nanoscopic structure of organic-inorganic hybrid formed by a siliceous network containing pendant amine-terminated propyl chains, called aminosils, was investigated by Small-Angle X-ray Scattering (SAXS). It appears that the composites exhibit a two-level structure. The first level consists of well-condensed cubic-like siloxane octamers, with a radius of gyration around 2 angstrom. The second level is formed by the aggregation of these siloxane nanodomains to form larger structures, in which the nanodomains are spatially correlated and separated by the organic pendant chains. Europium doping inhibits the aggregation between siloxane octamers, leading to a less compact second-level structure. This can be explained by the Eu3+ stop coordination close to the external surface of the siloxane nanodomains, as detected by luminescence spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica-poly(oxypropylene) (PPO) nanocomposites containing PPO with weak physical bonds between the organic (PPO) and inorganic (silica) phases were obtained by the sol-gel procedure. Three precursor sols containing silica and PPO with molecular weights of 1000, 2000 and 4000g/mol were prepared. The structure changes during the whole sol-gel process, i.e. sol formation, sol-gel transition and gel aging and drying were investigated in situ by small angle X-ray scattering (SAXS). The experimental SAXS curves corresponding to sols and wet gels containing PPO of molecular weight 1000g/mol indicate that the aggregates formed during the studied process are fractal objects. Close to the sol-gel transition and during gel aging the fractal dimension is D=2.5. A clearly different structure evolution occurs in samples prepared with PPO with molecular weights 2000 and 4000 g/mol. Our SAXS results indicate the presence of two coexisting and well-defined structure levels, one of them corresponding to small silica clusters and the other to large silica aggregates. These two levels remain along the whole transformation. The SAXS curves of all dry samples are similar to those of the corresponding wet gels suggesting that no significant changes at nanoscopic scale occur during the drying process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spherical silica nanoparticles were prepared using a basic amino acid catalysis route and the kinetics of the particles growth was investigated by small angle X-ray scattering (SAXS). L-arginine was used in the polar aqueous phase as the basic catalyst whereas the tetraethylorthosilicate (TEOS) was dissolved in the cyclohexane oil phase as the silicate monomer source. The SAXS measurements were taken in the aqueous phase at different reaction times. A high degree of monodispersity was clearly evidenced for the spherical nanoparticles as a result of the pronounced high-order oscillations observed in the SAXS curves. The SAXS data show that the particles number density remains unchanged since both the particle size as well as the volume fraction gradually increase. This process was discussed based on a reaction-controlled addition of monomer species at the surface of the growing particles. Consequently, the monodispersed spherical nanoparticles radius can as such be finely tuned from 7 to 12 nm by varying the reaction time. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-inorganic hybrids containing methacrylic acid (McOH, CH(2)= C(CH(3))COOH)) modified zirconium tetrapropoxide, Zr(OPr(n))(4), classed as di-ureasil-zirconium oxo-cluster hybrids, have been prepared and structurally characterized by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), Fourier transform infrared (FT-IR) and Raman (FT-Raman) spectroscopies, Si and C nuclear magnetic resonance (NMR), and atomic force microscopy (AFM). XRD and SAXS results have pointed out the presence of Si- and Zr-based nanobuilding blocks (NBBs) dispersed into the organic phase. Inter-NBBs correlation distances have been estimated for the pure di-ureasil and a model compound obtained. by hydrolysis/condensation of Zr(OPr(n))(4):McOH (molar ratio 1: 1): d(Si) approximate to 26 +/- 1 angstrom and d(Zr) approximate to 16 +/- 1 angstrom, respectively. In the case of the di-ureasil-zirconium oxo-cluster hybrids, these distances depend on the Zr relative molar percentage (rel. mol. Zr %) (d(Si) ranges from 18 to 25 angstrom and d(Zr) from 14 to 23 angstrom, as the rel. mol. Zr % increases from 5 to 75), suggesting that the Si- and Zr-based clusters are interconstrained. Complementary data from FT-IR, FT-Raman, (29)Si and (13)C NMR, and AFM support to a structural model where McOH-modified Zr-based NBBs (Zr-OMc) are present over the whole range of composition. At low Zr-OMc contents (rel. mol. Zr % <30) the clusters are well-dispersed within the di-ureasil host, whereas segregation occurs at the 0.1 mu m scale at high Zr-OMc concentration (rel. mol. Zr % = 50). No Zr-O-Si heterocondensation has been discerned. Monomode waveguides, diffractions gratings, and Fabry-Perot cavities have been written through the exposure of the hybrid monoliths to UV light. FT-Raman has shown that the chemical process that takes place under illumination is the polymerization of the methacrylate groups of the Zr-OMc NBBs. The guidance region in patterned channels is a Gaussian section located below the exposed surface with typical dimensions of 320 mu m wide and 88 mu m deep. The effective refractive index is 1.5162 (maximum index contrast on the order of 1 x 10(-4)) and the reflection coeficient of the Fabry-Perot cavity (formed by a grating patterned into a 0.278 cm channel) is 0.042 with a free spectral range value of 35.6 GHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anodic aluminium oxide (AAO) films exhibiting a homogeneous morphology of parallel pores perpendicular to the surface were prepared in a two-step anodization process and filled with copper by electrochemical deposition. The optimum growth conditions for the formation of freestanding AAO films with hexagonal compact array of cylindrical pores were studied by field emission scanning electron microscopy and small angle X-ray scattering. The results show well-defined periodic structures with uniform pores size distribution for films with pore diameters between 40 and 70 nm prepared using different voltages and temperatures during the second anodization step. X-ray photoelectron spectroscopy and X-ray diffraction analysis of AAO films filled with copper show the formation of nanowires with high structural order, exhibiting a preferential crystalline orientation along the (2 2 0) axis and only small fraction of copper oxides. The best results for textured Cu nanowires were obtained at a reduction potential of -300 mV. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism of formation and growth of hydrous iron oxide (FeOOH) during the initial stages of forced hydrolyses of ferric chloride aqueous solution was studied by small angle X-ray scattering (SAXS). The effect of the hydrolysis temperature (60°C, 70°C and 80°C) and of the addition of urea on the formation of colloidal particles under isothermal conditions were investigated. Based on the experimental scattering functions in the Guinier range, we suggest the presence of elongated colloidal particles. The particle diameter and length, and their variation with time, were determined by fitting the form factor of prolate ellipsoids to the experimental scattering functions. We have assumed that our solutions are in a dilute state and that all colloidal particles are approximately of the same size. The colloidal particles have geometrical shapes similar to those of the subcrystals that build up the superstructure of β-FeOOH crystals, indicating that the formation of this hydrous iron oxide is governed by an aggregation process. Otherwise, the addition of urea hinders the growth and yields smaller particles, with a reduction in size greater than 50%. © 2000 Elsevier Science B.V. All rights reserved.