936 resultados para single-input single-output FRF
Resumo:
Purpose: The ubiquity and value of teams in healthcare are well acknowledged. However, in practice, healthcare teams vary dramatically in their structures and effectiveness in ways that can damage team processes and patient outcomes. The aim of this paper is to highlight these characteristics and to extrapolate several important aspects of teamwork that have a powerful impact on team effectiveness across healthcare contexts. Design/methodology/approach: The paper draws upon the literature from health services management and organisational behaviour to provide an overview of the current science of healthcare teams. Findings: Underpinned by the input-process-output framework of team effectiveness, team composition, team task, and organisational support are viewed as critical inputs that influence key team processes including team objectives, leadership and reflexivity, which in turn impact staff and patient outcomes. Team training interventions and care pathways can facilitate more effective interdisciplinary teamwork. Originality/value: The paper argues that the prevalence of the term "team" in healthcare makes the synthesis and advancement of the scientific understanding of healthcare teams a challenge. Future research therefore needs to better define the fundamental characteristics of teams in studies in order to ensure that findings based on real teams, rather than pseudo-like groups, are accumulated. © Emerald Group Publishing Limited.
Resumo:
We develop a method for fabricating very small silica microbubbles having a micrometer-order wall thickness and demonstrate the first optical microbubble resonator. Our method is based on blowing a microbubble using stable radiative CO2 laser heating rather than unstable convective heating in a flame or furnace. Microbubbles are created along a microcapillary and are naturally opened to the input and output microfluidic or gas channels. The demonstrated microbubble resonator has 370 µm diameter, 2 µm wall thickness, and a Q factor exceeding 10. © 2010 Optical Society of America.
Resumo:
Performance evaluation in conventional data envelopment analysis (DEA) requires crisp numerical values. However, the observed values of the input and output data in real-world problems are often imprecise or vague. These imprecise and vague data can be represented by linguistic terms characterised by fuzzy numbers in DEA to reflect the decision-makers' intuition and subjective judgements. This paper extends the conventional DEA models to a fuzzy framework by proposing a new fuzzy additive DEA model for evaluating the efficiency of a set of decision-making units (DMUs) with fuzzy inputs and outputs. The contribution of this paper is threefold: (1) we consider ambiguous, uncertain and imprecise input and output data in DEA, (2) we propose a new fuzzy additive DEA model derived from the a-level approach and (3) we demonstrate the practical aspects of our model with two numerical examples and show its comparability with five different fuzzy DEA methods in the literature. Copyright © 2011 Inderscience Enterprises Ltd.
Resumo:
The increasing intensity of global competition has led organizations to utilize various types of performance measurement tools for improving the quality of their products and services. Data envelopment analysis (DEA) is a methodology for evaluating and measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. All the data in the conventional DEA with input and/or output ratios assumes the form of crisp numbers. However, the observed values of data in real-world problems are sometimes expressed as interval ratios. In this paper, we propose two new models: general and multiplicative non-parametric ratio models for DEA problems with interval data. The contributions of this paper are fourfold: (1) we consider input and output data expressed as interval ratios in DEA; (2) we address the gap in DEA literature for problems not suitable or difficult to model with crisp values; (3) we propose two new DEA models for evaluating the relative efficiencies of DMUs with interval ratios, and (4) we present a case study involving 20 banks with three interval ratios to demonstrate the applicability and efficacy of the proposed models where the traditional indicators are mostly financial ratios. © 2011 Elsevier Inc.
Resumo:
Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. Crisp input and output data are fundamentally indispensable in conventional DEA. However, the observed values of the input and output data in real-world problems are sometimes imprecise or vague. Many researchers have proposed various fuzzy methods for dealing with the imprecise and ambiguous data in DEA. In this study, we provide a taxonomy and review of the fuzzy DEA methods. We present a classification scheme with four primary categories, namely, the tolerance approach, the a-level based approach, the fuzzy ranking approach and the possibility approach. We discuss each classification scheme and group the fuzzy DEA papers published in the literature over the past 20 years. To the best of our knowledge, this paper appears to be the only review and complete source of references on fuzzy DEA. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Integer-valued data envelopment analysis (DEA) with alternative returns to scale technology has been introduced and developed recently by Kuosmanen and Kazemi Matin. The proportionality assumption of their introduced "natural augmentability" axiom in constant and nondecreasing returns to scale technologies makes it possible to achieve feasible decision-making units (DMUs) of arbitrary large size. In many real world applications it is not possible to achieve such production plans since some of the input and output variables are bounded above. In this paper, we extend the axiomatic foundation of integer-valuedDEAmodels for including bounded output variables. Some model variants are achieved by introducing a new axiom of "boundedness" over the selected output variables. A mixed integer linear programming (MILP) formulation is also introduced for computing efficiency scores in the associated production set. © 2011 The Authors. International Transactions in Operational Research © 2011 International Federation of Operational Research Societies.
Resumo:
Data envelopment analysis (DEA) has been proven as an excellent data-oriented efficiency analysis method for comparing decision making units (DMUs) with multiple inputs and multiple outputs. In conventional DEA, it is assumed that the status of each measure is clearly known as either input or output. However, in some situations, a performance measure can play input role for some DMUs and output role for others. Cook and Zhu [Eur. J. Oper. Res. 180 (2007) 692–699] referred to these variables as flexible measures. The paper proposes an alternative model in which each flexible measure is treated as either input or output variable to maximize the technical efficiency of the DMU under evaluation. The main focus of this paper is on the impact that the flexible measures has on the definition of the PPS and the assessment of technical efficiency. An example in UK higher education intuitions shows applicability of the proposed approach.
Resumo:
Emrouznejad et al. (2010) proposed a Semi-Oriented Radial Measure (SORM) model for assessing the efficiency of Decision Making Units (DMUs) by Data Envelopment Analysis (DEA) with negative data. This paper provides a necessary and sufficient condition for boundedness of the input and output oriented SORM models.
Resumo:
Conventional DEA models assume deterministic, precise and non-negative data for input and output observations. However, real applications may be characterized by observations that are given in form of intervals and include negative numbers. For instance, the consumption of electricity in decentralized energy resources may be either negative or positive, depending on the heat consumption. Likewise, the heat losses in distribution networks may be within a certain range, depending on e.g. external temperature and real-time outtake. Complementing earlier work separately addressing the two problems; interval data and negative data; we propose a comprehensive evaluation process for measuring the relative efficiencies of a set of DMUs in DEA. In our general formulation, the intervals may contain upper or lower bounds with different signs. The proposed method determines upper and lower bounds for the technical efficiency through the limits of the intervals after decomposition. Based on the interval scores, DMUs are then classified into three classes, namely, the strictly efficient, weakly efficient and inefficient. An intuitive ranking approach is presented for the respective classes. The approach is demonstrated through an application to the evaluation of bank branches. © 2013.
Resumo:
We develop a method for fabricating very small silica microbubbles having a micrometer-order wall thickness and demonstrate the first optical microbubble resonator. Our method is based on blowing a microbubble using stable radiative CO2 laser heating rather than unstable convective heating in a flame or furnace. Microbubbles are created along a microcapillary and are naturally opened to the input and output microfluidic or gas channels. The demonstrated microbubble resonator has 370 µm diameter, 2 µm wall thickness, and a Q factor exceeding 10. © 2010 Optical Society of America.
Resumo:
Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. Crisp input and output data are fundamentally indispensable in conventional DEA. However, the observed values of the input and output data in real-world problems are sometimes imprecise or vague. Many researchers have proposed various fuzzy methods for dealing with the imprecise and ambiguous data in DEA. This chapter provides a taxonomy and review of the fuzzy DEA (FDEA) methods. We present a classification scheme with six categories, namely, the tolerance approach, the α-level based approach, the fuzzy ranking approach, the possibility approach, the fuzzy arithmetic, and the fuzzy random/type-2 fuzzy set. We discuss each classification scheme and group the FDEA papers published in the literature over the past 30 years. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
The entorhinal cortex (EC) controls hippocampal input and output, playing major roles in memory and spatial navigation. Different layers of the EC subserve different functions and a number of studies have compared properties of neurones across layers. We have studied synaptic inhibition and excitation in EC neurones, and we have previously compared spontaneous synaptic release of glutamate and GABA using patch clamp recordings of synaptic currents in principal neurones of layers II (L2) and V (L5). Here, we add comparative studies in layer III (L3). Such studies essentially look at neuronal activity from a presynaptic viewpoint. To correlate this with the postsynaptic consequences of spontaneous transmitter release, we have determined global postsynaptic conductances mediated by the two transmitters, using a method to estimate conductances from membrane potential fluctuations. We have previously presented some of this data for L3 and now extend to L2 and L5. Inhibition dominates excitation in all layers but the ratio follows a clear rank order (highest to lowest) of L2>L3>L5. The variance of the background conductances was markedly higher for excitation and inhibition in L2 compared to L3 or L5. We also show that induction of synchronized network epileptiform activity by blockade of GABA inhibition reveals a relative reluctance of L2 to participate in such activity. This was associated with maintenance of a dominant background inhibition in L2, whereas in L3 and L5 the absolute level of inhibition fell below that of excitation, coincident with the appearance of synchronized discharges. Further experiments identified potential roles for competition for bicuculline by ambient GABA at the GABAA receptor, and strychnine-sensitive glycine receptors in residual inhibition in L2. We discuss our results in terms of control of excitability in neuronal subpopulations of EC neurones and what these may suggest for their functional roles. © 2014 Greenhill et al.
Resumo:
Data envelopment analysis (DEA) has gained a wide range of applications in measuring comparative efficiency of decision making units (DMUs) with multiple incommensurate inputs and outputs. The standard DEA method requires that the status of all input and output variables be known exactly. However, in many real applications, the status of some measures is not clearly known as inputs or outputs. These measures are referred to as flexible measures. This paper proposes a flexible slacks-based measure (FSBM) of efficiency in which each flexible measure can play input role for some DMUs and output role for others to maximize the relative efficiency of the DMU under evaluation. Further, we will show that when an operational unit is efficient in a specific flexible measure, this measure can play both input and output roles for this unit. In this case, the optimal input/output designation for flexible measure is one that optimizes the efficiency of the artificial average unit. An application in assessing UK higher education institutions used to show the applicability of the proposed approach. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Desktop user interface design originates from the fact that users are stationary and can devote all of their visual resource to the application with which they are interacting. In contrast, users of mobile and wearable devices are typically in motion whilst using their device which means that they cannot devote all or any of their visual resource to interaction with the mobile application -- it must remain with the primary task, often for safety reasons. Additionally, such devices have limited screen real estate and traditional input and output capabilities are generally restricted. Consequently, if we are to develop effective applications for use on mobile or wearable technology, we must embrace a paradigm shift with respect to the interaction techniques we employ for communication with such devices.This paper discusses why it is necessary to embrace a paradigm shift in terms of interaction techniques for mobile technology and presents two novel multimodal interaction techniques which are effective alternatives to traditional, visual-centric interface designs on mobile devices as empirical examples of the potential to achieve this shift.
Resumo:
The entorhinal cortex (EC) is a key brain area controlling both hippocampal input and output via neurones in layer II and layer V, respectively. It is also a pivotal area in the generation and propagation of epilepsies involving the temporal lobe. We have previously shown that within the network of the EC, neurones in layer V are subject to powerful synaptic excitation but weak inhibition, whereas the reverse is true in layer II. The deep layers are also highly susceptible to acutely provoked epileptogenesis. Considerable evidence now points to a role of spontaneous background synaptic activity in control of neuronal, and hence network, excitability. In the present article we describe results of studies where we have compared background release of the excitatory transmitter, glutamate, and the inhibitory transmitter, GABA, in the two layers, the role of this background release in the balance of excitability, and its control by presynaptic auto- and heteroreceptors on presynaptic terminals. © The Physiological Society 2004.