922 resultados para shock and awe
Resumo:
In this study, we evaluated the expression of the Zenk protein within the nucleus taeniae of the pigeon’s amygdala (TnA) after training in a classical aversive conditioning, in order to improve our understanding of its functional role in birds. Thirty-two 18-month-old adult male pigeons (Columba livia), weighing on average 350 g, were trained under different conditions: with tone-shock associations (experimental group; EG); with shock-alone presentations (shock group; SG); with tone-alone presentations (tone group; TG); with exposure to the training chamber without stimulation (context group; CG), and with daily handling (naive group; NG). The number of immunoreactive nuclei was counted in the whole TnA region and is reported as density of Zenk-positive nuclei. This density of Zenk-positive cells in the TnA was significantly greater for the EG, SG and TG than for the CG and NG (P < 0.05). The data indicate an expression of Zenk in the TnA that was driven by experience, supporting the role of this brain area as a critical element for neural processing of aversive stimuli as well as meaningful novel stimuli.
Resumo:
Several stresses to tissues including hyperthermia, ischemia, mechanical trauma and heavy metals have been demonstrated to affect the regulation of a subset of the family of heat shock proteins of70kOa (hsp70). In several organisms following some of these traumas, the levels of hsp70 mRNA and proteins are dramatically upregulated. However, the effects of the stress on limb and tail amputation in the newt Notophthalmus viridescens, involving mechanical tissue damage, have not adequately been examined. In the present study, three techniques were utilized to quantitate the levels of hsp70 mRNA and protein in the tissues of the forelimbs and tails of newts during the early post-traumatic events following surgical resection of these:: appendages. These included quantitative Western blotting of proteins separated by both one and twodimensional SDS-polyacrylamide gel electrophoresis and quantitative Northern blot analysis of total RNA. In tissues of both the limb and tail one hour after amputation, there were no significant differences in the levels of hsp70 protein measured by one-dimensional SOSPAGE followed by Western blotting, when compared to the levels measured in the unamputated limb. A 30 minute heat shock at 35°C failed to elicit an increase in the levels of hsp70 protein in these tissues. Further analysis using the more sensitive 20 PAGE separation of stump tissue proteins revealed that at least some of the five hsp70 isoforms of the newt may be differentially regulated in limbs and tails in response to trauma. It appears also that amputation of the tail and limb tissues leads to slight 3 elevation in the levels of HSP70 mRNA when compared to those of their respective unstressed tissues.
Resumo:
This paper discusses a study that collected cortical evoked responses when stimuli of different modalities were presented.
Resumo:
Recent coordinated observations of interplanetary scintillation (IPS) from the EISCAT, MERLIN, and STELab, and stereoscopic white-light imaging from the two heliospheric imagers (HIs) onboard the twin STEREO spacecraft are significant to continuously track the propagation and evolution of solar eruptions throughout interplanetary space. In order to obtain a better understanding of the observational signatures in these two remote-sensing techniques, the magnetohydrodynamics of the macro-scale interplanetary disturbance and the radio-wave scattering of the micro-scale electron-density fluctuation are coupled and investigated using a newly constructed multi-scale numerical model. This model is then applied to a case of an interplanetary shock propagation within the ecliptic plane. The shock could be nearly invisible to an HI, once entering the Thomson-scattering sphere of the HI. The asymmetry in the optical images between the western and eastern HIs suggests the shock propagation off the Sun–Earth line. Meanwhile, an IPS signal, strongly dependent on the local electron density, is insensitive to the density cavity far downstream of the shock front. When this cavity (or the shock nose) is cut through by an IPS ray-path, a single speed component at the flank (or the nose) of the shock can be recorded; when an IPS ray-path penetrates the sheath between the shock nose and this cavity, two speed components at the sheath and flank can be detected. Moreover, once a shock front touches an IPS ray-path, the derived position and speed at the irregularity source of this IPS signal, together with an assumption of a radial and constant propagation of the shock, can be used to estimate the later appearance of the shock front in the elongation of the HI field of view. The results of synthetic measurements from forward modelling are helpful in inferring the in-situ properties of coronal mass ejection from real observational data via an inverse approach.
Resumo:
We used two-dimensional difference gel electrophoresis to determine early changes in the stress-response pathways that precede focal adhesion disorganization linked to the onset of apoptosis of renal epithelial cells. Treatment of LLC-PK1 cells with the model nephrotoxicant 1,2-(dichlorovinyl)-L-cysteine (DCVC) resulted in a >1.5-fold up- and down-regulation of 14 and 9 proteins, respectively, preceding the onset of apoptosis. Proteins included those involved in metabolism, i.e. aconitase and pyruvate dehydrogenase, and those related to stress responses and cytoskeletal reorganization, i.e. cofilin, Hsp27, and alpha-b-crystallin. The most prominent changes were found for Hsp27, which was related to a pI shift in association with an altered phosphorylation status of serine residue 82. Although both p38 and JNK were activated by DCVC, only inhibition of p38 with SB203580 reduced Hsp27 phosphorylation, which was associated with accelerated reorganization of focal adhesions, cell detachment, and apoptosis. In contrast, inhibition of JNK with SP600125 maintained cell adhesion as well as protection against apoptosis. Active JNK co-localized at focal adhesions after DCVC treatment in a FAK-dependent manner. Inhibition of active JNK localization at focal adhesions did not prevent DCVC-induced phosphorylation of Hsp27. Overexpression of a phosphorylation-defective mutant Hsp27 acted as a dominant negative and accelerated the DCVC-induced changes in the focal adhesions as well as the onset of apoptosis. Our data fit a model whereby early p38 activation results in a rapid phosphorylation of Hsp27, a requirement for proper maintenance of cell adhesion, thus suppressing renal epithelial cell apoptosis.
Resumo:
We used two-dimensional difference gel electrophoresis to determine early changes in the stress-response pathways that precede focal adhesion disorganization linked to the onset of apoptosis of renal epithelial cells. Treatment of LLC-PK1 cells with the model nephrotoxicant 1,2-(dichlorovinyl)-L-cysteine ( DCVC) resulted in a > 1.5-fold up- and down-regulation of 14 and 9 proteins, respectively, preceding the onset of apoptosis. Proteins included those involved in metabolism, i.e. aconitase and pyruvate dehydrogenase, and those related to stress responses and cytoskeletal reorganization, i.e. cofilin, Hsp27, and alpha-b-crystallin. The most prominent changes were found for Hsp27, which was related to a pI shift in association with an altered phosphorylation status of serine residue 82. Although both p38 and JNK were activated by DCVC, only inhibition of p38 with SB203580 reduced Hsp27 phosphorylation, which was associated with accelerated reorganization of focal adhesions, cell detachment, and apoptosis. In contrast, inhibition of JNK with SP600125 maintained cell adhesion as well as protection against apoptosis. Active JNK co-localized at focal adhesions after DCVC treatment in a FAK-dependent manner. Inhibition of active JNK localization at focal adhesions did not prevent DCVC-induced phosphorylation of Hsp27. Overexpression of a phosphorylation-defective mutant Hsp27 acted as a dominant negative and accelerated the DCVC-induced changes in the focal adhesions as well as the onset of apoptosis. Our data fit a model whereby early p38 activation results in a rapid phosphorylation of Hsp27, a requirement for proper maintenance of cell adhesion, thus suppressing renal epithelial cell apoptosis.
Resumo:
alpha B-Crystallin is a ubiquitous small heat-shock protein (sHsp) renowned for its chaperone ability to prevent target protein aggregation. It is stress-inducible and its up-regulation is associated with a number of disorders, including those linked to the deposition of misfolded proteins, such as Alzheimer's and Parkinson's diseases. We have characterised the formation of amyloid fibrils by human alpha B-crystallin in detail, and also that of alpha A-crystallin and the disease-related mutant R120G (alpha B-crystallin. We find that the last 12 amino acid residues of the C-terminal region of alpha B-crystallin are predicted from their physico-chemical properties to have a very low propensity to aggregate. H-1 NMR spectroscopy reveals that this hydrophilic C-terminal region is flexible both in its solution state and in amyloid fibrils, where it protrudes from the fibrillar core. We demonstrate, in addition, that the equilibrium between different protofilament assemblies can be manipulated and controlled in vitro to select for particular alpha B-crystallin amyloid morphologies. Overall, this study suggests that there could be a fine balance in vivo between the native functional sHsp state and the formation of amyloid fibrils. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Listeria monocytogenes is a psychrotrophic food-borne pathogen that is problematic for the food industry because of its ubiquitous distribution in nature and its ability to grow at low temperatures and in the presence of high salt concentrations. Here we demonstrate that the process of adaptation to low temperature after cold shock includes elevated levels of cold shock proteins (CSPs) and that the levels of CSPs are also elevated after treatment with high hydrostatic pressure (HHP). Two-dimensional gel electrophoresis combined with Western blotting performed with anti-CspB of Bacillus subtilis was used to identify four 7-kDa proteins, designated Csp1, Csp2, Csp3, and Csp4. In addition, Southern blotting revealed four chromosomal DNA fragments that reacted with a csp probe, which also indicated that a CSP family is present in L. monocytogenes LO28. After a cold shock in which the temperature was decreased from 37°C to 10°C the levels of Csp1 and Csp3 increased 10- and 3.5-fold, respectively, but the levels of Csp2 and Csp4 were not elevated. Pressurization of L. monocytogenes LO28 cells resulted in 3.5- and 2-fold increases in the levels of Csp1 and Csp2, respectively. Strikingly, the level of survival after pressurization of cold-shocked cells was 100-fold higher than that of cells growing exponentially at 37°C. These findings imply that cold-shocked cells are protected from HHP treatment, which may affect the efficiency of combined preservation techniques.
Resumo:
We investigated the activation of three subfamilies of mitogen-activated protein kinases (MAPKs), namely the stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs), the extracellularly responsive kinases (ERKs) and p38-MAPK, by oxidative stress as exemplified by H2O2 in primary cultures of neonatal rat ventricular myocytes. The 46 and 54 kDa species of SAPKs/JNKs were activated 5- and 10-fold, respectively, by 0.1 mM H2O2 (the maximally effective concentration). Maximal activation occurred at 15-30 min, but was still detectable after 2 h. Both ERK1 and ERK2 were activated 16-fold by 0.1 mM H2O2 with a similar time course to the SAPKs/JNKs, and this was comparable with their activation by 1 microM PMA, the most powerful activator of ERKs that we have so far identified in these cells. The activation of ERKs by H2O2 was inhibited by PD98059, which inhibits the activation of MAPK (or ERK) kinases, and by the protein kinase C (PKC) inhibitor, GF109203X. ERK activation was also inhibited by down-regulation of PMA-sensitive PKC isoforms. p38-MAPK was activated by 0.1 mM H2O2 as shown by an increase in its phosphorylation. However, maximal phosphorylation (activation) was more rapid (<5 min) than for the SAPKs/JNKs or the ERKs. We studied the downstream consequences of p38-MAPK activation by examining activation of MAPK-activated protein kinase 2 (MAPKAPK2) and phosphorylation of the MAPKAPK2 substrate, the small heat shock protein HSP25/27. As with p38-MAPK, MAPKAPK2 was rapidly activated (maximal within 5 min) by 0.1 mM H2O2. This activation was abolished by 10 microM SB203580, a selective inhibitor of certain p38-MAPK isoforms. The phosphorylation of HSP25/27 rapidly followed activation of MAPKAPK2 and was also inhibited by SB203580. Phosphorylation of HSP25/27 was associated with a decrease in its aggregation state. These data indicate that oxidative stress is a powerful activator of all three MAPK subfamilies in neonatal rat ventricular myocytes. Activation of all three MAPKs has been associated with the development of the hypertrophic phenotype. However, stimulation of p38-MAPK and the consequent phosphorylation of HSP25/27 may also be important in cardioprotection.
Resumo:
Endogenous oxidative stress is a likely cause of cardiac myocyte death in vivo. We examined the early (0-2 h) changes in the proteome of isolated cardiac myocytes from neonatal rats exposed to H2O2 (0.1 mM), focussing on proteins with apparent molecular masses of between 20 and 30 kDa. Proteins were separated by two-dimensional gel electrophoresis (2DGE), located by silver-staining and identified by mass spectrometry. Incorporation of [35S]methionine or 32Pi was also studied. For selected proteins, transcript abundance was examined by reverse transcriptase-polymerase chain reaction. Of the 38 protein spots in the region, 23 were identified. Two families showed changes in 2DGE migration or abundance with H2O2 treatment: the peroxiredoxins and two small heat shock protein (Hsp) family members: heat shock 27 kDa protein 1 (Hsp25) and alphaB-crystallin. Peroxiredoxins shifted to lower pI values and this was probably attributable to 'over-oxidation' of active site Cys-residues. Hsp25 also shifted to lower pI values but this was attributable to phosphorylation. alphaB-crystallin migration was unchanged but its abundance decreased. Transcripts encoding peroxiredoxins 2 and 5 increased significantly. In addition, 10 further proteins were identified. For two (glutathione S-transferase pi, translationally-controlled tumour protein), we could not find any previous references indicating their occurrence in cardiac myocytes. We conclude that exposure of cardiac myocytes to oxidative stress causes post-translational modification in two protein families involved in cytoprotection. These changes may be potentially useful diagnostically. In the short term, oxidative stress causes few detectable changes in global protein abundance as assessed by silver-staining.
Resumo:
Mycoplasma pneumoniae is an important causative agent of respiratory infection in childhood. Although the infection caused by M. pneumoniae is classically described as benign, severe and life-threatening pulmonary and extrapulmonary complications can occur. This study describes the first case of septic shock related to M. pneumoniae in a child with necrotizing pneumonitis, severe encephalitis, and multiple organs involvement, with a favorable outcome after lobectomy and systemic corticosteroids
Resumo:
Objective: To describe the composition of metabolic acidosis in patients with severe sepsis and septic shock at intensive care unit admission and throughout the first 5 days of intensive care unit stay. Design: Prospective, observational study. Setting: Twelve-bed intensive care unit. Patients: Sixty patients with either severe sepsis or septic shock. Interventions: None. Measurements and Main Results: Data were collected until 5 days after intensive care unit admission. We studied the contribution of inorganic ion difference, lactate, albumin, phosphate, and strong ion gap to metabolic acidosis. At admission, standard base excess was -6.69 +/- 4.19 mEq/L in survivors vs. -11.63 +/- 4.87 mEq/L in nonsurvivors (p < .05); inorganic ion difference (mainly resulting from hyperchloremia) was responsible for a decrease in standard base excess by 5.64 +/- 4.96 mEq/L in survivors vs. 8.94 +/- 7.06 mEq/L in nonsurvivors (p < .05); strong ion gap was responsible for a decrease in standard base excess by 4.07 +/- 3.57 mEq/L in survivors vs. 4.92 +/- 5.55 mEq/L in nonsurvivors with a nonsignificant probability value; and lactate was responsible for a decrease in standard base excess to 1.34 +/- 2.07 mEq/L in survivors vs. 1.61 +/- 2.25 mEq/L in nonsurvivors with a nonsignificant probability value. Albumin had an important alkalinizing effect in both groups; phosphate had a minimal acid-base effect. Acidosis in survivors was corrected during the study period as a result of a decrease in lactate and strong ion gap levels, whereas nonsurvivors did not correct their metabolic acidosis. In addition to Acute Physiology and Chronic Health Evaluation 11 score and serum creatinine level, inorganic ion difference acidosis magnitude at intensive care unit admission was independently associated with a worse outcome. Conclusions: Patients with severe sepsis and septic shock exhibit a complex metabolic acidosis at intensive care unit admission, caused predominantly by hyperchloremic acidosis, which was more pronounced in nonsurvivors. Acidosis resolution in survivors was attributable to a decrease in strong ion gap and lactate levels. (Crit Care Med 2009; 37:2733-2739)
Resumo:
Corticotropin-releasing factor (CRF) is expressed in the paraventricular nucleus of the hypothalamus (PVN), and act centrally to provoke stress-like autonomic and behavioral responses. Urocortins 1-3 are additional ligands to the CRF receptors 1 and 2. Ucn 1 neurons are primarily concentrated in the Edinger-Westphal (EW) nucleus and also have been associated with stress responses. It is also known that UCN 1 respond in different ways depending on the stressor presented. Benzodiazepines can act via the CRF peptidergic system and chronic administration of alprazolam does not interfere with CRF mRNA expression in the PVN, but significantly increase Ucn 1 mRNA expression in the EW. The aim of our study was to investigate the relationship between different stressor stimuli, foot shock (FS) and restraint (R), and the mRNA expression of CRF and Ucn 1 in the PVN and EW using alprazolam (A). We employed fos activation and in situ hybridization. Restraint group presented increased fos-ir and CRF mRNA expression in the PVN compared to FS group. The stress responses of R group were prevented by A. In the EW,fos-ir was higher in the FS group than in the R group, whereas Ucn 1 mRNA expression was higher in the R group than in the FS group. Alprazolam significantly increased fos-ir and Ucn 1 mRNA expression in both groups. Our results show that PVN and EW respond in different ways to the same stressors. Furthermore, EW of stressed animals replies in a complementary way comparing to PVN with the use of Alprazolam. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A large majority of the 1000-1500 proteins in the mitochondria are encoded by the nuclear genome, and therefore, they are translated in the cytosol in the form and contain signals to enable the import of proteins into the organelle. The TOM complex is the major translocase of the outer membrane responsible for preprotein translocation. It consists of a general import pore complex and two membrane import receptors, Tom20 and Tom70. Tom70 contains a characteristic TPR domain, which is a docking site for the Hsp70 and Hsp90 chaperones. These chaperones are involved in protecting cytosolic preproteins from aggregation and then in delivering them to the TOM complex. Although highly significant, many aspects of the interaction between Tom70 and Hsp90 are still uncertain. Thus, we used biophysical tools to study the interaction between the C-terminal domain of Hsp90 (C-Hsp90), which contains the EEVD motif that binds to TPR domains, and the cytosolic fragment of Tom70. The results indicate a stoichiometry of binding of one monomer of Tom70 per dimer of C-Hsp90 with a K(D) of 360 30 nM, and the stoichiometry and thermodynamic parameters obtained suggested that Tom70 presents a different mechanism of interaction with Hsp90 when compared with other TPR proteins investigated. (C) 2011 Elsevier Inc. All rights reserved.