924 resultados para serotonin 2 receptor


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Much recent attention has focused on the GLP-1 receptor as a potential target for antidiabetic drugs. Enzyme resistant GLP-1 mimetics such as exenatide are now employed for the treatment of type 2 diabetes, but must be administered by injection. The present study has examined and compared the in vitro and in vivo metabolic actions of a small molecule GLP-1 receptor agonist 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (DMB), with native GLP-1, exenatide and liraglutide. DMB significantly stimulated in vitro insulin secretion from BRIN-BD11 cells but with decreased molar potency compared to native GLP-1 or related mimetics. Administration of DMB in combination with glucose to mice significantly (P

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization. The Journal of Immunology, 2011, 186: 3164-3172.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent studies implicate the collagen receptor, glycoprotein VI (GPVI) in activation of platelet 12-lipoxygenase (p12-LOX). Herein, we show that GPVI-stimulated 12-hydro(peroxy)eicosatetraenoic acid (H(P)ETE) synthesis is inhibited by palmityl trifluromethyl ketone or oleyloxyethyl phosphocholine, but not bromoenol lactone, implicating secretory and cytosolic, but not calcium-independent phospholipase A(2) (PLA(2)) isoforms. Also, following GPVI activation, 12-LOX co-immunoprecipitates with both cytosolic and secretory PLA(2), (sPLA(2)). Finally, venoms containing sPLA(2) acutely activate p12-LOX in a dose-dependent manner. This study shows that platelet 12-H(P)ETE generation utilizes arachidonate substrate from both c- and sPLA(2) and that 12-LOX functionally associates with both PLA(2) isoforms. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Induction of endotoxin tolerance leads to a reduced inflammatory response after repeated challenge by LPS and is important for resolution of inflammation and prevention of tissue damage. Enterobacterial LPS is recognized by the TLR4 signaling complex, whereas LPS of some non-enterobacterial organisms is capable of signaling independently of TLR4 utilizing TLR2-mediated signal transduction instead. In this study we report that Porphyromonas gingivalis LPS, a TLR2 agonist, fails to induce a fully endotoxin tolerant state in a human monocytic cell line (THP-1) and mouse bone marrow-derived macrophages. In contrast to significantly decreased production of human IL-8 and TNF-alpha and, in mice, keratinocyte-derived cytokine (KC), macrophage inflammatory protein-2 (MIP-2), and TNF-alpha after repeated challenge with Escherichia coli LPS, cells repeatedly exposed to P. gingivalis LPS responded by producing less TNF-alpha but sustained elevated secretion of IL-8, KC, and MIP-2. Furthermore, in endotoxin-tolerant cells, production of IL-8 is controlled at the signaling level and correlates well with NF-kappa B activation, whereas TNF-alpha expression is blocked at the gene transcription level. Interferon beta plays an important role in attenuation of chemokine expression in endotoxin-tolerized cells as shown in interferon regulatory factor-3 knock-out mice. In addition, human gingival fibroblasts, commonly known not to display LPS tolerance, were found to be tolerant to repeated challenge by LPS if pretreated with interferon beta. The data suggest that the inability of the LPS-TLR2 complex to induce full endotoxin tolerance in monocytes/macrophages is related to diminished production of interferon beta and may partly explain the involvement of these LPS isoforms in the pathogenesis of chronic inflammatory diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:


Rationale Upregulation of glucocorticoid receptor ß (GRß) has been implicated in steroid resistance in severe asthma, although previous studies are conflicting. GRß has been proposed as a dominant negative isoform of glucocorticoid receptor a (GRa) but it has also been suggested that GRß can cause steroid resistance via reduced expression of histone deacetylase 2 (HDAC2), a key regulator of steroid responsiveness in the airway.


Objectives To examine GRß, GRa, HDAC1 and HDAC2 expression at transcript and protein levels in bronchial biopsies from a large series of patients with severe asthma, and to compare the findings with those of patients with mild to moderate asthma and healthy volunteers.


Methods Bronchoscopic study in two UK centres with real-time PCR and immunohistochemistry performed on biopsies, western blotting of bronchial epithelial cells and immunoprecipitation with anti-GRß antibody.


Measurements and main results Protein and mRNA expression for GRa and HDAC2 did not differ between groups. GRß mRNA was detected in only 13 of 73 samples (seven patients with severe asthma), however immunohistochemistry showed widespread epithelial staining in all groups. Western blotting of bronchial epithelial cells with GRß antibody detected an additional ‘cross-reacting’ protein, identified as clathrin. HDAC1 expression was increased in patients with severe asthma compared with healthy volunteers.


Conclusions GRß mRNA is expressed at low levels in a minority of patients with severe asthma. HDAC1 and HDAC2 expression was not downregulated in severe asthma. These data do not support upregulated GRß and resultant reduced HDAC expression as the principal mechanism of steroid resistance in severe asthma. Conflicting GRß literature may be explained in part by clathrin cross-reactivity with commercial antibodies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When it is difficult to develop selective ligands within a family of related G-protein-coupled receptors (GPCRs), chemically engineered receptors activated solely by synthetic ligands (RASSLs) are useful alternatives for probing receptor function. In the present work, we explored whether a RASSL of the free fatty acid receptor 2 (FFA2) could be developed on the basis of pharmacological variation between species orthologs. For this, bovine FFA2 was characterized, revealing distinct ligand selectivity compared with human FFA2. Homology modeling and mutational analysis demonstrated a single mutation in human FFA2 of C4.57G resulted in a human FFA2 receptor with ligand selectivity similar to the bovine receptor. This was exploited to generate human FFA2-RASSL by the addition of a second mutation at a known orthosteric ligand interaction site, H6.55Q. The resulting FFA2-RASSL displayed a >100-fold loss of activity to endogenous ligands, while responding to the distinct ligand sorbic acid with pEC(50) values for inhibition of cAMP, 5.83 ± 0.11; Ca(2+) mobilization, 4.63 ± 0.05; ERK phosphorylation, 5.61 ± 0.06; and dynamic mass redistribution, 5.35 ± 0.06. This FFA2-RASSL will be useful in future studies on this receptor and demonstrates that exploitation of pharmacological variation between species orthologs is a powerful method to generate novel chemically engineered GPCRs.-Hudson, B. D., Christiansen, E., Tikhonova, I. G., Grundmann, M., Kostenis, E., Adams, D. R., Ulven, T., Milligan, G. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molecular mechanisms mediating the activity of 4-chloro-alpha-(1-methylethyl)-N-2-thiazolylbenzeneacetamide (4-CMTB), a recently described phenylacetamide allosteric agonist and allosteric modulator of endogenous ligand function at human FFA2, by combining our previous knowledge of the orthosteric binding site with targeted examination of 4-CMTB structure-activity relationships and mutagenesis and chimeric receptor generation. Here we show that 4-CMTB is a selective agonist for FFA2 that binds to a site distinct from the orthosteric site of the receptor. Ligand structure-activity relationship studies indicated that the N-thiazolyl amide is likely to provide hydrogen bond donor/acceptor interactions with the receptor. Substitution at Leu(173) or the exchange of the entire extracellular loop 2 of FFA2 with that of FFA3 was sufficient to reduce or ablate, respectively, allosteric communication between the endogenous and allosteric agonists. Thus, we conclude that extracellular loop 2 of human FFA2 is required for transduction of cooperative signaling between the orthosteric and an as-yet-undefined allosteric binding site of the FFA2 receptor that is occupied by 4-CMTB.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Free fatty acid receptor 2 (FFA2; GPR43) is a G protein-coupled seven-transmembrane receptor for short-chain fatty acids (SCFAs) that is implicated in inflammatory and metabolic disorders. The SCFA propionate has close to optimal ligand efficiency for FFA2 and can hence be considered as highly potent given its size. Propionate, however, does not discriminate between FFA2 and the closely related receptor FFA3 (GPR41). To identify FFA2-selective ligands and understand the molecular basis for FFA2 selectivity, a targeted library of small carboxylic acids was examined using holistic, label-free dynamic mass redistribution technology for primary screening and the receptor-proximal G protein [S-35] guanosine 5'-(3-O-thio) triphosphate activation, inositol phosphate, and cAMP accumulation assays for hit confirmation. Structure-activity relationship analysis allowed formulation of a general rule to predict selectivity for small carboxylic acids at the orthosteric binding site where ligands with substituted sp(3)-hybridized alpha-carbons preferentially activate FFA3, whereas ligands with sp(2)- or sp-hybridized alpha-carbons prefer FFA2. The orthosteric binding mode was verified by site-directed mutagenesis: replacement of orthosteric site arginine residues by alanine in FFA2 prevented ligand binding, and molecular modeling predicted the detailed mode of binding. Based on this, selective mutation of three residues to their non-conserved counterparts in FFA3 was sufficient to transfer FFA3 selectivity to FFA2. Thus, selective activation of FFA2 via the orthosteric site is achievable with rather small ligands, a finding with significant implications for the rational design of therapeutic compounds selectively targeting the SCFA receptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this prospective study, we examined biobehavioral responses to acute procedural pain at 2 months of age in infants with prenatal and postnatal selective serotonin reuptake inhibitor (SSRI) medication exposure. Based on previous findings showing reduced pain responses in newborns after prenatal exposure, we hypothesized that altered pain reactivity would also be found at 2 months of age.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chronic obstructive pulmonary disease (COPD) is characterised by pulmonary and systemic inflammation which flare-up during episodes of acute exacerbation (AECOPD). Given the role of Toll-like receptors (TLRs) in the induction of inflammatory responses we investigated the involvement of TLRs in COPD pathogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Selective polypharmacology, where a drug acts on multiple rather than single molecular targets involved in a disease, emerges to develop a structure-based system biology approach to design drugs selectively targeting a disease-active protein network. We focus on the bioaminergic receptors that belong to the group of integral membrane signalling proteins coupled to the G protein and represent targets for therapeutic agents against schizophrenia and depression. Among them, it has been shown that the serotonin (5-HT2A and 5-HT6), dopamine (D2 and D3) receptors induce a cognition-enhancing effect (group 1), while the histamine (H1) and serotonin (5-HT2C) receptors lead to metabolic side effects and the 5-HT2B serotonin receptor causes pulmonary hypertension (group 2). Thus, the problem arises to develop an approach that allows identifying drugs targeting only the disease-active receptors, i.e. group 1. The recent release of several crystal structures of the bioaminergic receptors, involving the D3 and H1 receptors provides the possibility to model the structures of all receptors and initiate a study of the structural and dynamic context of selective polypharmacology. In this work, we use molecular dynamics simulations to generate a conformational space of the receptors and subsequently characterize its binding properties applying molecular probe mapping. All-against-all comparison of the generated probe maps of the selected diverse conformations of all receptors with the Tanimoto similarity coefficient (Tc) enable to separate the receptors of group 1 from group 2. The pharmacophore built based on the Tc-selected receptor conformations, using the multiple probe maps discovers structural features that can be used to design molecules selective towards the receptors of group 1. The importance of several predicted residues to ligand selectivity is supported by the available mutagenesis and ligand structure-activity relationships studies. In addition, the Tc-selected conformations of the receptors for group 1 show good performance in isolation of known ligands from a random decoy. Our computational structure-based protocol to tackle selective polypharmacology of antipsychotic drugs could be applied for other diseases involving multiple drug targets, such as oncologic and infectious disorders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diabetic nephropathy (DN) is a progressive fibrotic condition that may lead to end-stage renal disease and kidney failure. Transforming growth factor-ß1 and bone morphogenetic protein-7 (BMP7) have been shown to induce DN-like changes in the kidney and protect the kidney from such changes, respectively. Recent data identified insulin action at the level of the nephron as a crucial factor in the development and progression of DN. Insulin requires a family of insulin receptor substrate (IRS) proteins for its physiological effects, and many reports have highlighted the role of insulin and IRS proteins in kidney physiology and disease. Here, we observed IRS2 expression predominantly in the developing and adult kidney epithelium in mouse and human. BMP7 treatment of human kidney proximal tubule epithelial cells (HK-2 cells) increases IRS2 transcription. In addition, BMP7 treatment of HK-2 cells induces an electrophoretic shift in IRS2 migration on SDS/PAGE, and increased association with phosphatidylinositol-3-kinase, probably due to increased tyrosine/serine phosphorylation. In a cohort of DN patients with a range of chronic kidney disease severity, IRS2 mRNA levels were elevated approximately ninefold, with the majority of IRS2 staining evident in the kidney tubules in DN patients. These data show that IRS2 is expressed in the kidney epithelium and may play a role in the downstream protective events triggered by BMP7 in the kidney. The specific up-regulation of IRS2 in the kidney tubules of DN patients also indicates a novel role for IRS2 as a marker and/or mediator of human DN progression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The biased agonism of the G protein-coupled receptors (GPCRs), where in addition to a traditional G protein-signalling pathway a GPCR promotes intracellular signals though ß-arrestin, is a novel paradigm in pharmacology. Biochemical and biophysical studies have suggested that a GPCR forms a distinct ensemble of conformations signalling through the G protein and ß-arrestin. Here we report on the dynamics of the ß2 adrenergic receptor bound to the ß-arrestin and G protein biased agonists and the empty receptor to further characterize the receptor conformational changes caused by biased agonists. We use conventional and accelerated molecular dynamics (aMD) simulations to explore the conformational transitions of the GPCR from the active state to the inactive state. We found that aMD simulations enable monitoring the transition within the nanosecond timescale while capturing the known microscopic characteristics of the inactive states, such as the ionic lock, the inward position of F6.44, and water clusters. Distinct conformational states are shown to be stabilized by each biased agonist. In particular, in simulations of the receptor with the ß-arrestin biased agonist, N-cyclopentylbutanepherine we observe a different pattern of motions in helix 7 when compared to simulations with the G protein biased agonist, Salbutamol that involves perturbations of the network of interactions within the NPxxY motif. Understanding the network of interactions induced by biased ligands and the subsequent receptor conformational shifts will lead to development of more efficient drugs. © 2013 American Chemical Society

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To evaluate the dose-response relationship of lixisenatide (AVE0010), a glucagon-like peptide-1 (GLP-1) receptor agonist, in metformin-treated patients with Type 2 diabetes.