898 resultados para selenium supplementation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background:  Whether calcium supplementation can reduce osteoporotic fractures is uncertain. We did a meta-analysis to include all the randomised trials in which calcium, or calcium in combination with vitamin D, was used to prevent fracture and osteoporotic bone loss.

Methods:  We identified 29 randomised trials (n=63 897) using electronic databases, supplemented by a hand-search of reference lists, review articles, and conference abstracts. All randomised trials that recruited people aged 50 years or older were eligible. The main outcomes were fractures of all types and percentage change of bone-mineral density from baseline. Data were pooled by use of a random-effect model.

Findings:  In trials that reported fracture as an outcome (17 trials, n=52 625), treatment was associated with a 12% risk reduction in fractures of all types (risk ratio 0·88, 95% CI 0·83–0·95; p=0·0004). In trials that reported bone-mineral density as an outcome (23 trials, n=41 419), the treatment was associated with a reduced rate of bone loss of 0·54% (0·35–0·73; p<0·0001) at the hip and 1·19% (0·76–1·61%; p<0·0001) in the spine. The fracture risk reduction was significantly greater (24%) in trials in which the compliance rate was high (p<0·0001). The treatment effect was better with calcium doses of 1200 mg or more than with doses less than 1200 mg (0·80 vs 0·94; p=0·006), and with vitamin D doses of 800 IU or more than with doses less than 800 IU (0·84 vs 0·87; p=0·03).

Interpretation:  Evidence supports the use of calcium, or calcium in combination with vitamin D supplementation, in the preventive treatment of osteoporosis in people aged 50 years or older. For best therapeutic effect, we recommend minimum doses of 1200 mg of calcium, and 800 IU of vitamin D (for combined calcium plus vitamin D supplementation).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rate-limiting step in docosahexaenoic acid (DHA) formation from α-linolenic acid (ALA) involves peroxisomal oxidation of 24:6n-3 to DHA. The aim of the study was to determine whether conjugated linoleic acid (CLA) would enhance conversion of ALA to DHA in humans on an ALA-supplemented diet. The subjects (n=8 per group) received daily supplementation of ALA (11g) and either CLA (3.2g) or placebo for 8 weeks. At baseline, 4 and 8 weeks, blood was collected for plasma fatty acid analysis and a number of physiological measures were examined. The ALA-supplemented diet increased plasma levels of ALA and eicosapentaenoic acid (EPA). The addition of CLA to the ALA diet resulted in increased plasma levels of CLA, as well as ALA and EPA. Plasma level of DHA was not increased with either the ALA alone or ALA plus CLA supplementation. The results demonstrated that CLA was not effective in enhancing DHA levels in plasma in healthy volunteers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The antioxidant activity of vitamin E is derived primarily from alpha-tocopherol (α-T) and gammatocopherol (γ-T). Results of epidemiological studies have demonstrated an inverse relationship between vitamin E intake and coronary disease. However, the results of clinical trials using α-T are equivocal. We determined the effect of 5 weeks of 100 mg/d or 200 mg/d γ-T supplementation on thrombotic markers such as platelet reactivity, lipid profile and the inflammation marker C-reactive protein (CRP). Methods and results: Fourteen healthy subjects consumed 100 mg/day while 13 consumed 200 mg/d of γ-T and 12 received placebo (soybean capsules with less than 5 mg/d γ-T) in a double-blinded parallel study design. Fasting pre and post dose blood samples were analysed. Blood γ-T concentrations increased significantly (p<0.05) relative to dose during the intervention period. Both groups receiving active ingredients showed significantly lower platelet activation after supplementation (p<0.05). Subjects consuming 100 mg/d γ-T had significantly decreased LDL cholesterol, platelet aggregation and mean platelet volume (MPV) (p<0.05). Little effect of γ-T was observed on other parameters. Conclusions: These data suggest that γ-T  supplementation may have a permissive role in decreasing the risk of
thrombotic events by improving lipid profile and reducing platelet activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An adequate calcium intake is an essential part of the prevention and treatment of osteoporosis. Two to threeserves of calcium-rich foods each day provides sufficient calcium for most non-pregnant adults. If this target is not achievable, calcium supplementation is generally effective, cheap and safe for most people. Calciumcarbonate(without vitamin and mineral additives) is the preferred supplement in most cases. Problems with calcium absorption arise due to factors including high·fibre vegetarian diets, achlorhydria, long·term glucocorticoid therapy and vitamin D deficiency. Vitamin D deficiency is extremely common in some ethnic groups and the elderly who are housebound or in residential care. These at risk groups generally require vitamin D supplementation to achieve adequate intestinal absorption of calcium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most research on creatine has focused on short-term creatine loading and its effect on high-intensity performance capacity. Some studies have investigated the effect of prolonged creatine use during strength training. However, studies on the effects of prolonged creatine supplementation are lacking. In the present study, we have assessed the effects of both creatine loading and prolonged supplementation on muscle creatine content, body composition, muscle and whole-body oxidative capacity, substrate utilization during submaximal exercise, and on repeated supramaximal sprint, as well as endurance-type time-trial performance on a cycle ergometer. Twenty subjects ingested creatine or a placebo during a 5-day loading period (20g·day-1) after which supplementation was continued for up to 6 weeks (2g·day-1). Creatine loading increased muscle free creatine, creatine phosphate (CrP) and total creatine content (P<0.05). The subsequent use of a 2g·day-1 maintenance dose, as suggested by an American College of Sports Medicine Roundtable, resulted in a decline in both the elevated CrP and total creatine content and maintenance of the free creatine concentration. Both short- and long-term creatine supplementation improved performance during repeated supramaximal sprints on a cycle ergometer. However, whole-body and muscle oxidative capacity, substrate utilization and time-trial performance were not affected. The increase in body mass following creatine loading was maintained after 6 weeks of continued supplementation and accounted for by a corresponding increase in fat-free mass. This study provides definite evidence that prolonged creatine supplementation in humans does not increase muscle or whole-body oxidative capacity and, as such, does not influence substrate utilization or performance during endurance cycling exercise. In addition, our findings suggest that prolonged creatine ingestion induces an increase in fat-free mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been speculated that creatine supplementation affects muscle glucose metabolism in humans by increasing muscle glycogen storage and up-regulating GLUT-4 protein expression. In the present study, we assessed the effects of creatine loading and prolonged supplementation on muscle glycogen storage and GLUT-4 mRNA and protein content in humans. A total of 20 subjects participated in a 6-week supplementation period during which creatine or a placebo was ingested. Muscle biopsies were taken before and after 5 days of creatine loading (20 g.day(-1)) and after 6 weeks of continued supplementation (2 g.day(-1)). Fasting plasma insulin concentrations, muscle creatine, glycogen and GLUT-4 protein content as well as GLUT-4, glycogen synthase-1 (GS-1) and glycogenin-1 (Gln-1) mRNA expression were determined. Creatine loading significantly increased total creatine, free creatine and creatine phosphate content with a concomitant 18 +/- 5% increase in muscle glycogen content (P<0.05). The subsequent use of a 2 g.day(-1) maintenance dose for 37 days did not maintain total creatine, creatine phosphate and glycogen content at the elevated levels. The initial increase in muscle glycogen accumulation could not be explained by an increase in fasting plasma insulin concentration, muscle GLUT-4 mRNA and/or protein content. In addition, neither muscle GS-1 nor Gln-1 mRNA expression was affected. We conclude that creatine ingestion itself stimulates muscle glycogen storage, but does not affect muscle GLUT-4 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The age and developmental stage at which calcium supplementation produces the greatest bone effects remain controversial. We tested the hypothesis that calcium supplementation may improve bone accrual in premenarcheal females. Fifty-one pairs of premenarcheal female twins (27 monozygotic and 24 dizygotic; mean ± SD age, 10.3 ± 1.5 yr) participated in a randomized, single-blind, placebo-controlled trial with one twin of each pair receiving a 1200-mg calcium carbonate (Caltrate) supplement. Areal bone mineral density (aBMD) was measured at baseline and 6, 12, 18 and 24 months. There were no within-pair differences in height, weight, or calcium intake at baseline. Calcium supplementation was associated (P < 0.05) with increased aBMD compared with placebo, adjusted for age, height, and weight at the following time points from baseline: total hip, 6 months (1.9%), 12 months (1.6%), and 18 months (2.4%); lumbar spine, 12 months (1.0%); femoral neck, 6 months (1.9%). Adjusted total body bone mineral content was higher in the calcium group at 6 months (2.0%), 12 months (2.5%), 18 months (4.6%), and 24 months (3.7%), respectively (all P < 0.001). Calcium supplementation was effective in increasing aBMD at regional sites over the first 12–18 months, but these gains were not maintained to 24 months.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Creatine (Cr) supplementation has been shown to attenuate increases in plasma ammonia and hypoxanthine during intense endurance exercise lasting 1 h, suggesting that Cr supplementation may improve muscle energy balance (matching of ATP resynthesis to ATP demand) during such exercise. We hypothesized that Cr supplementation would improve muscle energy balance (as assessed by muscle inosine monophosphate (IMP) accumulation) during intense endurance exercise.

Methods: Seven well-trained men completed two experimental trials involving approximately 1 h of intense endurance exercise (cycling 45 min at 78 ± 1% V̇O2peak followed by completion of 251 ± 6 kJ as quickly as possible (performance ride)). Subjects ingested approximately 42 g·d-1 dextrose for 5 d before the first experimental trial (CON), then approximately 21 g Cr monohydrate plus approximately 21 g·d-1 dextrose for 5 d before the second experimental trial (CREAT). Trials were ordered because of the long washout time for Cr. Subjects were blinded to the order of the trials.

Results: Creatine supplementation significantly (P < 0.05) increased muscle total Cr (resting values: CREAT: 138.1 ± 7.9; CON: 117.7 ± 6.5 mmol·kg-1 dm). No difference was seen between treatments in any measured muscle or blood metabolite after the first 45 min of exercise. Despite the performance ride completion time being similar in the two treatments (∼13.5 min, ∼86% V̇O2peak), IMP at the end of the performance ride was significantly (P < 0.05) lower in CREAT than in CON (CREAT: 1.2 ± 0.6; CON: 2.0 ± 0.7 mmol·kg-1 dm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In view of the reported potential anti-inflammatory activity of the New Zealand green lipped mussel (NZGLM), we aimed to compare the effect of low dose marine oil supplementation, from mussels and fish, in reducing blood markers of inflammation. Thirty apparently healthy males and females were recruited from the general public in Melbourne, Australia to participate in a double blind, randomised, parallel intervention study. Subjects were consuming approximately 73 mg of omega-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) daily in their background diet prior to the commencement of the intervention. Subjects were randomly assigned to consume either 2 mL/day of the NZGLM oil preparation (mixed with olive oil and dl-alpha-tocopherol) or fish oil preparation (also mixed with olive oil and dl-alpha-tocopherol) for six weeks. Two mL of the oils contained 241 mg and 181 mg of n-3 LCPUFA, respectively. Neutrophil phospholipid fatty acids, serum thromboxane B2 (TXB2), stimulated monocyte production of prostaglandin E2 (PGE2), interleukin-1 beta (IL-1 beta) and tumor necrosis factor alpha (TNFalpha) were measured. During the intervention, the total intakes of n-3 LCPUFA from the background diet and the supplements were 199 mg/d and 173 mg/day for the NZGLM and FO groups, respectively. Following six weeks of supplementation, both groups showed a small, but significant increase in neutrophil phospholipid proportion of eicosapentaenoic acid. The NZGLM group also showed a significant increase in docosahexaenoic acid levels. There were no significant changes with time or treatment for TXB2, PGE2, IL-1 beta or TNFalpha. This study showed that low dose supplementation with n-3 LCPUFA from two different marine oil preparations showed no difference in inflammatory markers in this group of healthy individuals. Further studies are warranted including dose response trials and studies in populations with inflammatory conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background – Squalene is a component of shark liver oil and has been speculated to have cholesterol reducing properties. High levels of total and LDL cholesterol have been shown to contribute to the development of chronic heart disease. The liver is central to the regulation of cholesterol metabolism and dietary intervention has long been recognized as a primary means to reduce the risks of chronic heart disease and related ailments.
Objectives – To determine the effect of dietary squalene supplementation on gene transcripts associated with liver cholesterol metabolism. Specifically the effect of squalene supplementation on mRNA levels for proteins that
regulate cholesterol biosynthesis (HMDH & ERG1), cholesterol elimination (SRB1), bile synthesis (CP7A1 & CP27A) and cholesterol excretion by the liver into bile (ABCG5 & ABCG8) was investigated.
Design – Rats (n=32) were divided into four groups and supplemented for 12 weeks. Groups one and two were fed a cholesterol rich diet for six weeks followed by six weeks of a cholesterol rich diet plus 1.75mg/day of squalene or 3.5 mg/day. Group three was fed a cholesterol rich diet for 12 weeks and group four was fed standard rat chow for 12 weeks. Blood lipid levels were monitored during the study and liver gene expression was determined at the
conclusion of the feeding trial via RT-PCR.
Outcomes – 3.5 mg/day of squalene lowered total and LDL cholesterol in rats consuming a cholesterol rich diet. This dose of squalene also resulted in constant levels of HMDH and ERG1 whereas the cholesterol rich diet halved mRNA levels of these enzymes. Furthermore 3.5 mg/day of squalene caused a greater than 3.0 fold increase in mRNA levels of the proteins SRB1, CP7A1, CP27A and ABCG5.
Conclusion – Dietary squalene supplementation at a dose of 3.5 mg/day lowers total and LDL cholesterol in rats consuming a cholesterol rich diet. These reductions in cholesterol levels may be due to increased cholesterol
elimination, bile synthesis and cholesterol excretion by the liver into bile mediated by changes in gene expression of key enzymes involved in these metabolic pathways

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low dietary intakes of the n-3 long-chain PUFA (LCPUFA) EPA and DHA are thought to be associated with increased risk for a variety of adverse  outcomes, including some psychiatric disorders. Evidence from  observational and intervention studies for a role of n-3 LCPUFA in depression is mixed, with some support for a benefit of EPA and/or DHA in major depressive illness. The present study was a double-blind randomised controlled trial that evaluated the effects of EPA+DHA supplementation (1.5 g/d) on mood and cognitive function in mild to moderately depressed  individuals. Of 218 participants who entered the trial, 190 completed the planned 12 weeks intervention. Compliance, confirmed by plasma fatty acid concentrations, was good, but there was no evidence of a difference between supplemented and placebo groups in the primary outcome - namely, the depression subscale of the Depression Anxiety and Stress Scales at 12 weeks. Mean depression score was 8.4 for the EPA+DHA group and 9.6 for the placebo group, with an adjusted difference of - 1.0 (95 % CI - 2.8, 0.8; P = 0.27). Other measures of mood, mental health and cognitive function, including Beck Depression Inventory score and attentional bias toward threat words, were similarly little affected by the intervention. In conclusion, substantially increasing EPA+DHA intake for 3 months was found not to have beneficial or harmful effects on mood in mild to moderate depression. Adding the present result to a meta-analysis of previous relevant randomised controlled trial results confirmed an overall negligible benefit of n-3 LCPUFA supplementation for depressed mood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creatine monohydrate (CrM) supplementation has been shown to increase fat-free mass and muscle power output possibly via cell swelling. Little is known about the cellular response to CrM. We investigated the effect of short-term CrM supplementation on global and targeted mRNA expression and protein content in human skeletal muscle. In a randomized, placebo-controlled, crossover, double-blind design, 12 young, healthy, nonobese men were supplemented with either a placebo (PL) or CrM (loading phase, 20 g/day x 3 days; maintenance phase, 5 g/day x 7 days) for 10 days. Following a 28-day washout period, subjects were put on the alternate supplementation for 10 days. Muscle biopsies of the vastus lateralis were obtained and were assessed for mRNA expression (cDNA microarrays + real-time PCR) and protein content (Kinetworks KPKS 1.0 Protein Kinase screen). CrM supplementation significantly increased fat-free mass, total body water, and body weight of the participants (P < 0.05). Also, CrM supplementation significantly upregulated (1.3- to 5.0-fold) the mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodeling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival. We are the first to report this large-scale gene expression in the skeletal muscle with short-term CrM supplementation, a response that suggests changes in cellular osmolarity.