865 resultados para scaling relations
Resumo:
The objective of this paper is to explore the relative importance of each of Marshall's agglomeration mechanisms by examining the location of new manufacturing firms in Spain. In particular, we estimate the count of new firms by industry and location as a function of (pre-determined) local employment levels in industries that: 1) use similar workers (labor market pooling); 2) have a customer- supplier relationship (input sharing); and 3) use similar technologies (knowledge spillovers). We examine the variation in the creation of new firms across cities and across municipalities within large cities to shed light on the geographical scope of each of the three agglomeration mechanisms. We find evidence of all three agglomeration mechanisms, although their incidence differs depending on the geographical scale of the analysis.
Resumo:
Using an extended-random-phase-approximation sum-rule technique, we have investigated the bulk-plasmon dispersion relation, incorporating in a simple way exchange and correlation effects within the jellium model. The results obtained are compared with recent experimental findings. The key role played by exchange and correlation effects in improving the agreement between theory and experiment is stressed. The static polarizability has also been calculated as a function of q. The formulas can be easily modified to incorporate band-structure effects (through an intraband electron effective mass) and core-polarization effects (through a static dielectric constant).
Resumo:
The evolution of organic matter sources in soil is related to climate and vegetation dynamics in the past recorded in paleoenvironmental Quaternary deposits such as peatlands. For this reason, a Histosol of the mineralotrophic peatland from the Pau-de-Fruta Special Protection Area - SPA, Espinhaço Meridional, State of Minas Gerais, was described and characterized to evidence the soil constituent materials and properties as related to changes in environmental conditions, supported by the isotopic and elementary characterization of soil C and N and 14C ages. Samples were collected in a depression at 1,350 m asl, where Histosols are possibly more developed due to the great thickness (505 cm). Nowadays, the area is colonized by vegetation physiognomies of the Cerrado Biome, mainly rocky and wet fields (Campo Rupestre and Campo Úmido), aside from fragments of Semidecidual Seasonal Forest, called Capões forests. The results this study showed that early the genesis of the analyzed soil profile showed a high initial contribution of mostly herbaceous organic matter before 8,090 ± 30 years BP (14C age). In the lower-mid Holocene, between 8,090 ± 30 years AP (14C age) to ± 4,100 years BP (interpolated age), the vegetation gradually became more woody, with forest expansion, possibly due to increased humidity, suggesting the existence of a more woody Cerrado in the past than at present. Drier climate conditions than the current were concluded ± 2,500 years BP (interpolated age) and that after 430 years BP (14C age) the forest gave way to grassland, predominantly. After the dry season, humidity increased to the current conditions. Due to these climate fluctuations during the Holocene, three decomposition stages of organic matter were observed in the Histosols of this study, with prevalence of the most advanced (sapric), typical of a deposit in a highly advanced stage of pedogenetic evolution.
Resumo:
A numerical study is presented of the third-dimensional Gaussian random-field Ising model at T=0 driven by an external field. Standard synchronous relaxation dynamics is employed to obtain the magnetization versus field hysteresis loops. The focus is on the analysis of the number and size distribution of the magnetization avalanches. They are classified as being nonspanning, one-dimensional-spanning, two-dimensional-spanning, or three-dimensional-spanning depending on whether or not they span the whole lattice in different space directions. Moreover, finite-size scaling analysis enables identification of two different types of nonspanning avalanches (critical and noncritical) and two different types of three-dimensional-spanning avalanches (critical and subcritical), whose numbers increase with L as a power law with different exponents. We conclude by giving a scenario for avalanche behavior in the thermodynamic limit.
Resumo:
To synchronize nutrient availability with the requirements of eucalyptus during a cultivation cycle, the nutrient flow of this system must be well understood. Essential, for example, is information about nutrient dynamics in eucalyptus plantations throughout a cultivation cycle, as well as impacts on soil nutrient reserves caused by the accumulation and subsequent export of nutrients via biomass. It is also important to quantify the effect of some management practices, such as tree population density (PD) on these fluxes. Some nutrient relations in an experiment with Eucalyptus grandis, grown at different PDs in Santa Barbara, state of Minas Gerais, Brazil, were evaluated for one cultivation cycle. At forest ages of 0.25, 2.5, 4.5, and 6.75 years, evaluations were carried out in the stands at seven different PDs (between 500 and 5,000 trees ha-1) which consisted in chemical analyses of plant tissue sampled from components of the aboveground parts of the tree, from the forest floor and the litterfall. Nutrient contents and allocations of the different biomass components were estimated. In general, there were only small and statistically insignificant effects of PD on the nutrient concentration in trees. With increasing forest age, P, K, Ca and Mg concentrations were reduced in the aboveground components and the forest floor. The magnitud of biochemical nutrient cycling followed the sequence: P > K > N > Mg. At the end of the cycle, the quantities of N, P, Ca and Mg immobilized in the forest floor were higher than in the other components.
Resumo:
compatible with the usual nonlocal model governed by surface tension that results from a macroscopic description. To explore this discrepancy, we exhaustively analyze numerical integrations of a phase-field model with dichotomic columnar disorder. We find that two distinct behaviors are possible depending on the capillary contrast between the two values of disorder. In a high-contrast case, where interface evolution is mainly dominated by the disorder, an inherent anomalous scaling is always observed. Moreover, in agreement with experimental work, the interface motion has to be described through a local model. On the other hand, in a lower-contrast case, the interface is dominated by interfacial tension and can be well modeled by a nonlocal model. We have studied both spontaneous and forced-flow imbibition situations, giving a complete set of scaling exponents in each case, as well as a comparison to the experimental results.
Resumo:
The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim), in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.
Resumo:
The scaling properties of the rough liquid-air interface formed in the spontaneous imbibition of a viscous liquid by a model porous medium are found to be very sensitive to the magnitude of the pressure difference applied at the liquid inlet. Interface fluctuations change from obeying intrinsic anomalous scaling at large negative pressure differences, to being super-rough with the same dynamic exponent z¿3 at less negative pressure differences, to finally obeying ordinary Family-Vicsek scaling with z¿2 at large positive pressure differences. This rich scenario reflects the relative importance on different length scales of capillary and permeability disorder, and the role of surface tension and viscous pressure in damping interface fluctuations.
Resumo:
We derive analytical expressions for the excitation energy of the isoscalar giant monopole and quadrupole resonances in finite nuclei, by using the scaling method and the extended ThomasFermi approach to relativistic mean-field theory. We study the ability of several nonlinear σω parameter sets of common use in reproducing the experimental data. For monopole oscillations the calculations agree better with experiment when the nuclear matter incompressibility of the relativistic interaction lies in the range 220260 MeV. The breathing-mode energies of the scaling method compare satisfactorily with those obtained in relativistic RPA and time-dependent mean-field calculations. For quadrupole oscillations, all the analyzed nonlinear parameter sets reproduce the empirical trends reasonably well.
Resumo:
By using the scaling method we derive the virial theorem for the relativistic mean field model of nuclei treated in the ThomasFermi approach. The ThomasFermi solutions statisfy the stability condition against scaling. We apply the formalism to study the excitation energy of the breathing mode in finite nuclei with several relativistic parameter sets of common use.