935 resultados para response function
Resumo:
Proteins disabled in Fanconi anemia (FA) are necessary for the maintenance of genome stability during cell proliferation. Upon replication stress signaling by ATR, the FA core complex monoubiquitinates FANCD2 and FANCI in order to activate DNA repair. Here, we identified FANCD2 and FANCI in a proteomic screen of replisome-associated factors bound to nascent DNA in response to replication arrest. We found that FANCD2 can interact directly with minichromosome maintenance (MCM) proteins. ATR signaling promoted the transient association of endogenous FANCD2 with the MCM2-MCM7 replicative helicase independently of FANCD2 monoubiquitination. FANCD2 was necessary for human primary cells to restrain DNA synthesis in the presence of a reduced pool of nucleotides and prevented the accumulation of single-stranded DNA, the induction of p21, and the entry of cells into senescence. These data reveal that FANCD2 is an effector of ATR signaling implicated in a general replisome surveillance mechanism that is necessary for sustaining cell proliferation and attenuating carcinogenesis.
Resumo:
Diets rich in omega-3s have been thought to prevent both obesity and osteoporosis. However, conflicting findings are reported, probably as a result of gene by nutritional interactions. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor that improves insulin sensitivity but causes weight gain and bone loss. Fish oil is a natural agonist for PPARγ and thus may exert its actions through the PPARγ pathway. We examined the role of PPARγ in body composition changes induced by a fish or safflower oil diet using two strains of C57BL/6J (B6); i.e. B6.C3H-6T (6T) congenic mice created by backcrossing a small locus on Chr 6 from C3H carrying 'gain of function' polymorphisms in the Pparγ gene onto a B6 background, and C57BL/6J mice. After 9months of feeding both diets to female mice, body weight, percent fat and leptin levels were less in mice fed the fish oil vs those fed safflower oil, independent of genotype. At the skeletal level, fish oil preserved vertebral bone mineral density (BMD) and microstructure in B6 but not in 6T mice. Moreover, fish oil consumption was associated with an increase in bone marrow adiposity and a decrease in BMD, cortical thickness, ultimate force and plastic energy in femur of the 6T but not the B6 mice. These effects paralleled an increase in adipogenic inflammatory and resorption markers in 6T but not B6. Thus, compared to safflower oil, fish oil (high ratio omega-3/-6) prevents weight gain, bone loss, and changes in trabecular microarchitecture in the spine with age. These beneficial effects are absent in mice with polymorphisms in the Pparγ gene (6T), supporting the tenet that the actions of n-3 fatty acids on bone microstructure are likely to be genotype dependent. Thus caution must be used in interpreting dietary intervention trials with skeletal endpoints in mice and in humans.
Resumo:
Notch signalling has an important role in skin homeostasis, promoting keratinocyte differentiation and suppressing tumorigenesis. Here we show that this pathway also has an essential anti-apoptotic function in the keratinocyte UVB response. Notch1 expression and activity are significantly induced, in a p53-dependent manner, by UVB exposure of primary keratinocytes as well as intact epidermis of both mouse and human origin. The apoptotic response to UVB is increased by deletion of the Notch1 gene or down-modulation of Notch signalling by pharmacological inhibition or genetic suppression of 'canonical' Notch/CSL/MAML1-dependent transcription. Conversely, Notch activation protects keratinocytes against apoptosis through a mechanism that is not linked to Notch-induced cell cycle withdrawal or NF-kappaB activation. Rather, transcription of FoxO3a, a key pro-apoptotic gene, is under direct negative control of Notch/HERP transcription in keratinocytes, and upregulation of this gene accounts for the increased susceptibility to UVB of cells with suppressed Notch signalling. Thus, the canonical Notch/HERP pathway functions as a protective anti-apoptotic mechanism in keratinocytes through negative control of FoxO3a expression.
Resumo:
Injection of cells expressing the retroviral superantigen Mls-1 (Mtv-7 sag) into adult Mls-1- mice induces a strong immune response including both T- and B-cell activation. This model was used for studying qualitative aspects of the immune response in normal mice with a defined antigen-presenting cell (the B cell) and without the use of adjuvant. BALB/c mice were injected locally or systemically with Mls-1-expressing spleen cells from Mls-1-congenic BALB.D2 mice. Intravenous injection led to an initially strong expansion of Mls-1-reactive V beta 6+ CD4+ cells mainly in the spleen, to a large degree explained by the trapping of reactive cells, and a rapid down-regulation of interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) production, consistent with the proposed tolerogenic property of B cells as antigen-presenting cells. However, these mice developed a slowly appearing but persistent B-cell response dominated by IgG1-producing cells, suggesting a shift in lymphokines produced rather than complete unresponsiveness. Subcutaneous injection into the hind footpad with the same number of cells led to a strong local response in the draining lymph node, characterized by a dramatic increase of V beta 6+ CD4+ T cells, local production of IL-2 and IFN-gamma and a strong but short-lived antibody response dominated by IgG2a-producing cells, characteristic of a T-helper type 1 (Th1) type of response. Both routes of injection led ultimately to deletion of reactive T cells and anergy, as defined by the inability to produce IL-2 upon in vitro stimulation with Mls-1. It is concluded that Mls-1 presented by B cells induces qualitatively different responses in vivo dependent on the route of injection. We propose that the different responses result from the migration of the injected cells to different micro-anatomical sites in the lymphoid tissue. Furthermore, these results suggest that B cells may function as professional antigen-presenting cells in vivo present in an appropriate environment.
Resumo:
Sensory information can interact to impact perception and behavior. Foods are appreciated according to their appearance, smell, taste and texture. Athletes and dancers combine visual, auditory, and somatosensory information to coordinate their movements. Under laboratory settings, detection and discrimination are likewise facilitated by multisensory signals. Research over the past several decades has shown that the requisite anatomy exists to support interactions between sensory systems in regions canonically designated as exclusively unisensory in their function and, more recently, that neural response interactions occur within these same regions, including even primary cortices and thalamic nuclei, at early post-stimulus latencies. Here, we review evidence concerning direct links between early, low-level neural response interactions and behavioral measures of multisensory integration.
Resumo:
BACKGROUND AND OBJECTIVE: Recent in vitro studies have suggested an important role of cytochrome P450 (CYP) 2B6 and CYP2C19 in methadone metabolism. We aimed to determine the influence of CYP2B6, CYP2C9, and CYP2C19 genetic polymorphism on methadone pharmacokinetics and on the response to treatment. METHODS: We included 209 patients in methadone maintenance treatment on the basis of their response to treatment and their daily methadone dose. Patients were genotyped for CYP2B6, CYP2C9, and CYP2C19. Steady-state trough and peak (R)-, (S)-, and (R,S)-plasma levels and peak-to-trough plasma level ratios were measured. RESULTS: CYP2B6 genotype influences (S)-methadone and, to a lesser extent, (R)-methadone plasma levels, with the median trough (S)-methadone plasma levels being 105, 122, and 209 ng . kg/mL . mg for the noncarriers of allele *6, heterozygous carriers, and homozygous carriers (*6/*6), respectively (P = .0004). CYP2C9 and CYP2C19 genotypes do not influence methadone plasma levels. Lower peak and trough plasma levels of methadone and higher peak-to-trough ratios were measured in patients considered as nonresponders [median (R,S)-methadone trough plasma levels of 183 and 249 ng . kg/mL . mg (P = .0004) and median peak-to-trough ratios of 1.82 and 1.58 for high-dose nonresponders and high-dose responders, respectively (P = .0003)]. CONCLUSION: Although CYP2B6 influences (S)-methadone plasma levels, given that only (R)-methadone contributes to the opioid effect of this drug, a major influence of CYP2B6 genotype on response to treatment is unlikely and has not been shown in this study. Lower plasma levels of methadone in nonresponders, suggesting a higher clearance, and higher peak-to-trough ratios, suggesting a shorter elimination half-life, are in agreement with the usual clinical measures taken for such patients, which are to increase methadone dosages and to split the daily dose into several intakes.
Resumo:
Inflammasomes are caspase-1-activating multiprotein complexes. The mouse nucleotide-binding domain and leucine rich repeat pyrin containing 1b (NLRP1b) inflammasome was identified as the sensor of Bacillus anthracis lethal toxin (LT) in mouse macrophages from sensitive strains such as BALB/c. Upon exposure to LT, the NLRP1b inflammasome activates caspase-1 to produce mature IL-1β and induce pyroptosis. Both processes are believed to depend on autoproteolysed caspase-1. In contrast to human NLRP1, mouse NLRP1b lacks an N-terminal pyrin domain (PYD), indicating that the assembly of the NLRP1b inflammasome does not require the adaptor apoptosis-associated speck-like protein containing a CARD (ASC). LT-induced NLRP1b inflammasome activation was shown to be impaired upon inhibition of potassium efflux, which is known to play a major role in NLRP3 inflammasome formation and ASC dimerization. We investigated whether NLRP3 and/or ASC were required for caspase-1 activation upon LT stimulation in the BALB/c background. The NLRP1b inflammasome activation was assessed in both macrophages and dendritic cells lacking either ASC or NLRP3. Upon LT treatment, the absence of NLRP3 did not alter the NLRP1b inflammasome activity. Surprisingly, the absence of ASC resulted in IL-1β cleavage and pyroptosis, despite the absence of caspase-1 autoprocessing activity. By reconstituting caspase-1/caspase-11(-/-) cells with a noncleavable or catalytically inactive mutant version of caspase-1, we directly demonstrated that noncleavable caspase-1 is fully active in response to the NLRP1b activator LT, whereas it is nonfunctional in response to the NLRP3 activator nigericin. Taken together, these results establish variable requirements for caspase-1 cleavage depending on the pathogen and the responding NLR.
Resumo:
Cystatin C (CstC) is a cysteine protease inhibitor of major clinical importance. Low concentration of serum CstC is linked to atherosclerosis. CstC can prevent formation of amyloid β associated with Alzheimer's disease and can itself form toxic aggregates. CstC regulates NO secretion by macrophages and is a TGF-β antagonist. Finally, the serum concentration of CstC is an indicator of kidney function. Yet, little is known about the regulation of CstC expression in vivo. In this study, we demonstrate that the transcription factor IFN regulatory factor 8 (IRF-8) is critical for CstC expression in primary dendritic cells. Only those cells with IRF-8 bound to the CstC gene promoter expressed high levels of the inhibitor. Secretion of IL-10 in response to inflammatory stimuli downregulated IRF-8 expression and consequently CstC synthesis in vivo. Furthermore, the serum concentration of CstC decreased in an IL-10-dependent manner in mice treated with the TLR9 agonist CpG. CstC synthesis is therefore more tightly regulated than hitherto recognized. The mechanisms involved in this regulation might be targeted to alter CstC production, with potential therapeutic value. Our results also indicate that caution should be exerted when using the concentration of serum CstC as an indicator of kidney function in conditions in which inflammation may alter CstC production.
Resumo:
Jasmonates, potent lipid mediators of defense gene expression in plants, are rapidly synthesized in response to wounding. These lipid mediators also stimulate their own production via a positive feedback circuit, which depends on both JA synthesis and JA signaling. To date, molecular components regulating the activation of jasmonate biogenesis and its feedback loop have been poorly characterized. We employed a genetic screen capable of detecting the misregulated activity of 13-lipoxygenase, which operates at the entry point of the jasmonate biosynthesis pathway. Leaf extracts from the Arabidopsis fou2 (fatty acid oxygenation upregulated 2) mutant displayed an increased capacity to catalyze the synthesis of lipoxygenase (LOX) metabolites. Quantitative oxylipin analysis identified less than twofold increased jasmonate levels in healthy fou2 leaves compared to wild-type; however, wounded fou2 leaves strongly increased jasmonate biogenesis compared to wounded wild-type. Furthermore, the plants displayed enhanced resistance to the fungus Botrytis cinerea. Higher than wild-type LOX activity and enhanced resistance in the fou2 mutant depend fully on a functional jasmonate response pathway. The fou2 mutant carries a missense mutation in the putative voltage sensor of the Two Pore Channel 1 gene (TPC1), which encodes a Ca(2+)-permeant non-selective cation channel. Patch-clamp analysis of fou2 vacuolar membranes showed faster time-dependent conductivity and activation of the mutated channel at lower membrane potentials than wild-type. The results indicate that cation fluxes exert strong control over the positive feedback loop whereby JA stimulates its own synthesis.
Resumo:
Aims The aim of this study was to evaluate the effect of hormone replacement therapy (HRT) on coronary vasomotor function in post-menopausal women (PM) with medically treated cardiovascular risk factors (RFs) in a cross-sectional and a longitudinal follow-up (FU) study. Methods and results Myocardial blood flow (MBF) response to cold pressor testing (CPT) and during pharmacologically induced hyperaemia was measured with positron emission tomography in pre-menopausal women (CON), in PM with HRT and without HRT, and repeated in PM after a mean FU of 24 +/- 14 months. When compared with CON at baseline, the endothelium-related change in MBF (DeltaMBF) to CPT progressively declined in PM with HRT and without HRT (0.35 +/- 0.23 vs. 0.24 +/- 0.20 and 0.16 +/- 0.12 mL/g/min; P = 0.171 and P = 0.021). In PM without HRT and in those with HRT at baseline but with discontinuation of HRT during FU, the endothelium-related DeltaMBF to CPT was significantly less at FU than at baseline (0.05 +/- 0.19 vs. 0.16 +/- 0.12 and -0.03 +/- 0.14 vs. 0.25 +/- 0.18 mL/g/min; P = 0.023 and P = 0.001), whereas no significant change was observed in PM with HRT (0.19 +/- 0.22 vs. 0.23 +/- 0.22 mL/g/min; P = 0.453). Impaired hyperaemic MBFs when compared with CON were not significantly altered from those at baseline exam. Conclusion Long-term administration of oestrogen may contribute to maintain endothelium-dependent coronary function in PM with medically treated cardiovascular RFs.
Resumo:
Mice deficient in CCR7 signals show severe defects in lymphoid tissue architecture and immune response. These defects are due to impaired attraction of CCR7+ DC and CCR7+ T cells into the T zones of secondary lymphoid organs and altered DC maturation. It is currently unclear which CCR7 ligand mediates these processes in vivo as CCL19 and CCL21 show an overlapping expression pattern and blocking experiments have given contradictory results. In this study, we addressed this question using CCL19-deficient mice expressing various levels of CCL21. Complete deficiency of CCL19 and CCL21 but not CCL19 alone was found to be associated with abnormal frequencies and localization of DC in naïve LN. Similarly, CCL19 was not required for DC migration from the skin, full DC maturation and efficient T-cell priming. Our findings suggest that CCL21 is the critical CCR7 ligand regulating DC homeostasis and function in vivo with CCL19 being redundant for these processes.
Resumo:
The low GFR of newborns is maintained by various factors including the renin-angiotensin system. We previously established the importance of angiotensin II in the newborn kidney, using the angiotensin-converting enzyme inhibitor perindoprilat. The present study was designed to complement these observations by evaluating the role of angiotensin-type 1 (AT(1)) receptors, using losartan, a specific AT(1)-receptor blocker. Increasing doses of losartan were infused into anesthetized, ventilated, newborn rabbits. Renal function and hemodynamic variables were assessed using inulin and para-aminohippuric acid clearances as markers of GFR and renal plasma flow, respectively. Losartan 0.1 mg/kg slightly decreased mean blood pressure (-11%) and increased diuresis (+22%). These changes can be explained by inhibition of the AT(1)-mediated vasoconstrictive and antidiuretic effects of angiotensin, and activation of vasodilating and diuretic AT(2) receptors widely expressed in the neonatal period. GFR and renal blood flow were not modified. Losartan 0.3 mg/kg decreased mean blood pressure significantly (-15%), probably by inhibiting systemic AT(1) receptors. GFR significantly decreased (-25%), whereas renal blood flow remained stable. The decrease in filtration fraction (-21%) indicates predominant efferent vasodilation. At 3 mg/kg, the systemic hypotensive effect of losartan was marked (mean blood pressure, -28%), with decreased GFR and renal blood flow (-57% and -51%, respectively), a stable filtration fraction, and an increase in renal vascular resistance by 124%. The renal response to this dose can be considered as reflex vasoconstriction of afferent and efferent arterioles, rather than specific receptor antagonism. We conclude that under physiologic conditions, the renin-angiotensin is critically involved in the maintenance of GFR in the immature kidney.
Resumo:
cAMP response element binding protein-2 (CREB-2) is a basic leucine zipper (bZIP) factor that was originally described as a repressor of CRE-dependent transcription but that can also act as a transcriptional activator. Moreover, CREB-2 is able to function in association with the viral Tax protein as an activator of the human T-cell leukemia virus type I (HTLV-I) promoter. Here we show that CREB-2 is able to interact with C/EBP-homologous protein (CHOP), a bZIP transcription factor known to inhibit CAAT/enhancer-dependent transcription. Cotransfection of CHOP with CREB-2 results in decreased activation driven by the cellular CRE motif or the HTLV-I proximal Tax-responsive element, confirming that CREB-2 and CHOP can interact with each other in vivo.
Resumo:
This work describes a simulation tool being developed at UPC to predict the microwave nonlinear behavior of planar superconducting structures with very few restrictions on the geometry of the planar layout. The software is intended to be applicable to most structures used in planar HTS circuits, including line, patch, and quasi-lumped microstrip resonators. The tool combines Method of Moments (MoM) algorithms for general electromagnetic simulation with Harmonic Balance algorithms to take into account the nonlinearities in the HTS material. The Method of Moments code is based on discretization of the Electric Field Integral Equation in Rao, Wilton and Glisson Basis Functions. The multilayer dyadic Green's function is used with Sommerfeld integral formulation. The Harmonic Balance algorithm has been adapted to this application where the nonlinearity is distributed and where compatibility with the MoM algorithm is required. Tests of the algorithm in TM010 disk resonators agree with closed-form equations for both the fundamental and third-order intermodulation currents. Simulations of hairpin resonators show good qualitative agreement with previously published results, but it is found that a finer meshing would be necessary to get correct quantitative results. Possible improvements are suggested.
Resumo:
Summary: Adeno-associated virus type 2 (AAV2) is a small virus containing single-stranded DNA of approximately 4.7kb in size. Both ends of the viral genome are flanked with inverted terminal repeat sequences (ITRs), which serve as primers for viral replication. Previous work in our laboratory has shown that AAV2 DNA with ultraviolet radiation-generated crosslinks (UV-AAV2) provokes a DNA damage response in the host cell by mimicking a stalled replication fork. Infection of cells with UV-AAV2 leads to a p53-and Chk1-mediated cell cycle arrest at the G2/M border of the cell cycle. However, tumour cells lacking the tumour suppressor protein p53 cannot sustain this arrest and enter a prolonged impaired mitosis, the outcome of which is cell death. The aim of my thesis was to investigate how UV-inactivated AAV2 kilts p53-deficient cancer cells. I found that the UV-AAV2-induced DNA damage signalling induces centriole overduplication in infected cells. The virus is able to uncouple the centriole duplication cycle from the cell cycle, leading to amplified centrosome numbers. Chk1 colocalises with centrosomes in the infected cells and the centrosome overduplication is dependent on the presence of Chk1, as well as on the activities of ATR and Cdk kinases and on the G2 arrest. The UV-AAV2-induced DNA damage signalling inhibits the degradation of cyclin B 1 and securin by the anaphase promoting complex, suggesting that the spindle checkpoint is activated in these mitotic cells. Interference with the spindle checkpoint components Mad2 and BubR1 revealed that the UV-AAV2-provoked mitotic catastrophe occurs independently of spindle checkpoint function, This work shows that, in the p53 deficient cells, UV-AAV2 triggers mitotic catastrophe associated with a dramatic Chk1-dependent overduplication of centrioles and the consequent formation of multiple spindle poles in mitosis. Résumé Le virus associé à l'adénovirus type 2 (AAV2) est un petit virus contenant un simple brin d'ADN d'environ 4.7kb. Des expériences antérieures dans notre laboratoire ont montré que les liens intramoléculaires sur l'ADN de AAV2 provoqués paz l'irradiation aux ultraviolets (UV) ressemblent à une fourche de réplication bloquée, ce qui provoque une réponse aux dommages à l'ADN dans la cellule hôte. L'infection des cellules avec UV-AAV2 résulte en un arrêt du cycle cellulaire à la transition G2/M entraîné par les protéines ATR et Chk1. Cependant, les cellules tumorales auxquelles il manque le suppresseur de tumeur p53 ne peuvent pas tenir cet arrêt et entrent dans une mitose anormale et prolongée qui se terminera par la mort cellulaire. Le but de ma thèse était d'étudier comment l'AAV2 inactivé par l'irradiation UV tue les cellules cancéreuses n'ayant pas p53. Je montre ici que le signal de dommages à l'ADN induit par UV-AAV2 génère une surduplication des centrioles dans les cellules infectées. Le virus est capable de dissocier le cycle de duplication du centriole du cycle cellulaire ce qui crée un nombre amplifié de centrosomes. Chk1 est co-localisé avec le centrosome dans les cellules infectées et la swduplication du centrosome est dépendante de la présence de Chk1, de l'activité des kinases ATR et Cdk et de l'arrêt en G2 de la cellule. Le signal d'ADN endommagé induit par UV-AAV2 réprime la dégradation des protéines cycline B1 et securine par le complexe promoteur de l'anaphase (APC), ce qui suggère que le point de contrôle du fuseau mitotique est activé dans ces cellules en mitose. L'étude d'interférence avec des éléments du point de contrôle du fuseau mitotique, Mad2 et BubR1, a révélé que la catastrophe mitotique provoquée paz UV-AAV2 survient indépendamment du point de contrôle du fuseau mitotique. Ce travail montre que dans les cellules déficientes en p53, UV-AAV2 induit une catastrophe mitotique associée à une surduplication des centrioles dépendant de Chk1 et ayant pour conséquence dramatique la formation de multiples fuseaux mitotiques dans la cellule en mitose.