986 resultados para rat tail vascular bed
Resumo:
The medial prefrontal cortex (mPFC) has been strongly implicated in control of the paraventricular nucleus of the hypothalamus (PVN) response to stress. Because of the paucity of direct projections from the mPFC to the PVN, we sought to investigate possible brain regions that might act as a relay between the two during psychological stress. Bilateral ibotenic acid lesions of the rat mPFC enhanced the number of Fos-immunoreactive cells seen in the PVN after exposure to the psychological stressor, air puff. Altered neuronal recruitment was seen in only one of the candidate relay populations examined, the ventral bed nucleus of the stria terminalis (vBNST). Furthermore, bilateral ibotenic acid lesions of the BNST caused a significant attenuation of the PVN response to air puff. To better characterize the structural relationships between the mPFC and PVN, retrograde tracing studies were conducted examining Fos expression in cells retrogradely labeled with cholera toxin b subunit (CTb) from the PVN and the BNST. Results obtained were consistent with an important role for both the mPFC and BNST in the mpPVN CRF cell response to air puff. We suggest a set of connections whereby a direct PVN projection from the ipsilateral vBNST is involved in the mpPVN response to air puff and this may, in turn, be modulated by an indirect projection from the mPFC to the BNST. (C) 2004 Wiley-Liss, Inc.
Resumo:
In opiate addicts or patients receiving morphine treatment, it has been reported that the immune system is often compromised. The mechanisms responsible for the adverse effects of opioids on responses to infection are not clear but it is possible that central and/or peripheral opioid receptors may be important. We have utilised an experimental immune challenge model in rats, the systemic administration of the human pro-inflammatory cytokine interleukin-1 beta (IL-1 beta) to study the effects of selectively blocking peripheral opioid receptors only (using naloxone methiodide) or after blocking both central and peripheral opioid receptors (using naloxone). Pre-treatment with naloxone methiodide decreased (15%) IL-1 beta-induced Fos-immunoreactivity (Fos-IR) in medial parvocellular paraventricular nucleus (mPVN) corticotropin-releasing hormone (CRH) neurons but increased responses in the ventrolateral medulla (VLM) C1 (65%) and nucleus tractus solitarius (NTS) A2 (110%) catecholamine cell groups and area postrema (136%). However no effect of blocking peripheral opioid receptors was detected in the central nucleus of the amygdala (CeA) or dorsal bed nucleus of the stria terminalis (BNST). We next determined the effect of blocking both central and peripheral opioid receptors with naloxone and, when compared to the naloxone methiodide pre-treated group, a further 60% decrease in Fos-IR mPVN CRH neurons induced by IL-1 beta was detected, which was attributed to block of central opioid receptors. Similar comparisons also detected decreases in Fos-IR neurons induced by IL-1 beta in the VLM A1, VLM C1 and NTS A2 catecholamine cell groups, area postrema, and parabrachial nucleus. In contrast, pre-treatment with naloxone increased Fos-IR neurons in CeA (98%) and dorsal BNST (72%). These results provide novel evidence that endogenous opioids can influence central neural responses to systemic IL-1 beta and also suggest that the differential patterns of activation may arise because of actions at central and/or peripheral opioid receptors that might be important in regulating behavioural, hypothalamic-pituitary-adrenal axis and sympathetic nervous system responses during an immune challenge. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
By most accounts the psychological stressor restraint produces a distinct pattern of neuronal activation in the brain. However, some evidence is incongruous with this pattern, leading us to propose that the restraint- induced pattern in the central nervous system might depend on the duration of restraint used. We therefore determined the pattern of neuronal activation ( as indicated by the presence of Fos protein) seen in the paraventricular nucleus (PVN), bed nucleus of the stria terminalis, amygdala, locus coeruleus, nucleus tractus solitarius (NTS), ventrolateral medulla (VLM) and thoracic spinal cord of the rat in response to 0, 15, 30 or 60 min periods of restraint. We found that although a number of cell groups displayed a linear increase in activity with increasing durations of restraint ( e. g. hypothalamic corticotrophin-releasing factor (CRF) cells, medial amygdala neurons and sympathetic preganglionic neurons of the thoracic spinal cord), a number of cell groups did not. For example, in the central amygdala restraint produced both a decrease in CRF cell activity and an increase in non-CRF cell activity. In the locus coeruleus, noradrenergic neurons did not display Fos in response to 15 min of restraint, but were significantly activated by 30 or 60 min restraint. After 30 or 60 min restraint a greater degree of activation of more rostral A1 noradrenergic neurons was observed compared with the pattern of A1 noradrenergic neurons in response to 15 min restraint. The results of this study demonstrate that restraint stress duration determines the amount and the pattern of neuronal activation seen in response to this psychological stressor.
Resumo:
Uteroplacental vascular insufficiency in humans is a common cause of intrauterine growth restriction (IUGR) and is associated with an increased incidence of perinatal asphyxia and neurodevelopmental disorders compared to normal weight newborns. Experimental models that provide an opportunity to analyze the pathogenesis of these relationships are limited. Here, we used neonatal pigs from large litters in which there were piglets of normal birth weight (for controls) and of low birth weight (for uteroplacental vascular insufficiency). Hypoxia was induced in paired littermates by reducing the fraction of inspired oxygen to 4% for 25 min. Brain tissue was collected 4 h post-hypoxia. Cerebral levels of apoptosis were quantified morphologically and verified with caspase-3 activity and TUNEL. Expression of Bcl-2, BcI-XL and Bax proteins was investigated using immunohistochemistry. Cellular positivity for Bcl-2 was consistently higher in the non-apoptotic white matter of the hypoxic IUGR animals compared with their littermates and reached significance at P < 0.05 in several pairs of littermates. Alterations in Bax showed a trend towards higher expression in the hypoxic IUGR littermates but rarely reached significance. The IUGR piglets showed a significantly greater amount of apoptosis in response to the hypoxia than the normal weight piglets, suggesting an increased vulnerability to apoptosis in the IUGR piglets. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Vascular endothelial growth factor-B (VEGF-B) is closely related to VEGF-A, an effector of blood vessel growth during development and disease and a strong candidate for angiogenic therapies. To further study the in vivo function of VEGF-B, we have generated Vegfb knockout mice (Vegfb(-/-)). Unlike Vegfa knockout mice, which die during embryogenesis, Vegfb(-/-) mice are healthy and fertile. Despite appearing overtly normal, Vegfb(-/-) hearts are reduced in size and display vascular dysfunction after coronary occlusion and impaired recovery from experimentally induced myocardial ischemia. These findings reveal a role for VEGF-B in the development or function of coronary vasculature and suggest potential clinical use in therapeutic angiogenesis. The full text of this article is available at http://www.circresaha.org.
Resumo:
This study concerns the production and action of the local mediators nitric oxide (NO) and prostaglandin E2 (PGE2) in the rat gastric mucosa. The major objectives were: (i) to determine which mucosal cell type(s) contained NO synthase activity, (ii) to establish the functional role(s) of NO in the gastric mucosa and (iii) to investigate regulation of gastric PGE2 production. Gastric mucosal cells were isolated by pronase digestion coupled with intermittent calcium chelation and were separated by either density-gradient centrifugation or by counterflow elutriation. The distribution of Ca2+ -dependent NO synthase activity, measured via the conversion of [14C]-L-arginine to [14C]-L- citrulline, paralleled the distribution of mucous cells in elutriated fractions. Pre-treatment of rats with lipopolysaccharide caused the induction of Ca2+ -independent NO synthase in the elutriator fractions enriched with mucous cells. Incubation of isolated cells with the NO donor isosorbide dinitrate (ISDN) produced a concentration-dependent increase in the guanosine 3',-5'-cyclic monophosphate (cGMP) content which was accompanied by a concentration-dependent increase in release of immunoreactive mucin. Intragastric administration of ISDN of dibutyryl cGMP in vivo increased the thickness of the mucus layer overlying the gastric mucosa. The NO donor S-nitroso-N-acetylpenicillamine (SNAP) produced a concentration-dependent inhibition (IC50 247 μM) of histamine-stimulated aminopyrine accumulation, a measure of secretory activity, in cell suspensions containing > 80% parietal cells. SNAP increased the cGMP content of the suspension but did not decrease cellular viability, glucose oxidation or adenosine 3',5'-cyclic monophosphate content. The inhibitory effect of SNAP was observed in permeabilised cells stimulated with ATP and was stereospecifically blocked by preincubation with Rp-8-bromoguanosine 3'-5'-monophosphorothioate, which inhibits activation of cGMP-dependent protein kinase. Stimulation of PGE2 release by bradykinin in a low density cell fraction, enriched with parietal cells and devoid of vascular endothelial cells and macrophages, involved a bradykinin B1 receptor. In summary, NO synthase activity is probably present in gastric mucous epithelial cells. NO may promote mucus secretion by elevation of cGMP. NO donors inhibit acid secretion at a specific site and their action may involve cGMP. The bradykinin B1 receptor is involved with PGE2 production in the gastric mucosa.
Resumo:
Vascular smooth muscle cell (VSMC) behaviour and phenotypic modulation is critical to vessel repair following damage, and the progression of various cardiovascular diseases. The second messenger cyclic adenosine monophosphosphate (cAMP) plays a key role in VSMC function under the synthetic/activated phenotype, which is typically associated with unhealthy cell behaviour. Consequently, cAMP signaling is often targeted in attempts to impact several pathological diseases, including atherosclerosis, restenosis, and pulmonary arterial hypertension (PAH). The cyclic nucleotide phosphodiesterases (PDEs) catalyze hydrolysis of cAMP to an inactive form, and therefore directly regulate cAMP signaling. The PDE4D family dominates in synthetic VSMCs, and there is considerable interest in determining how distinct PDE4D isoforms affect cell function. Specifically, we are interested in the potential link between short isoforms of PDE4D and VSMC desensitization to pharmacological agents that impact cardiovascular disease via cAMP signaling. This study extends on previous work that assessed the expression of PDE4D splice variants in rat aortic VSMCs following prolonged challenge with cAMP-elevating agents. It was determined that PDE4D1 and PDE4D2 were uniquely expressed in synthetic VSMCs incubated with these agents, and that this upregulation impacted PDE activity and cAMP accumulation in these cells. Here, we report that PDE4D1 and PDE4D2 are markedly upregulated in synthetic human aortic smooth muscle cells (HASMCs) following prolonged challenge with cAMP-elevating agents. Using a combination of RNAi-based and pharmacological approaches, we establish that this upregulation is reflected in levels of cAMP PDE activity, and restricted to the cytosolic sub-cellular compartment. Our results suggest a role for localized PDE4D1 and PDE4D2 activity in regulating cAMP-mediated desensitization in HASMCs, and highlight their therapeutic potential in treating various cardiovascular diseases.
Resumo:
Lymphatic porosity was produced by feeding rats a diet, lacking from the vitamins of the B group. Coumarintroxerutin (Venalot®) treatment has been found to prevent this abnormality. Pathophysiologic and therapeutic implications of these findings are discussed. © 1973 S. Karger AG, Basel.
Resumo:
A large SAV bed in upper Chesapeake Bay has experienced several abrupt shifts over the past half-century, beginning with near-complete loss after a record-breaking flood in 1972, followed by an unexpected, rapid resurgence in the early 2000’s, then partial decline in 2011 following another major flood event. Together, these trends and events provide a unique opportunity to study a recovering SAV ecosystem from several different perspectives. First, I analyzed and synthesized existing time series datasets to make inferences about what factors prompted the recovery. Next, I analyzed existing datasets, together with field samples and a simple hydrodynamic model to investigate mechanisms of SAV bed loss and resilience to storm events. Finally, I conducted field deployments and experiments to explore how the bed affects internal physical and biogeochemical processes and what implications those effects have for the dynamics of the system. I found that modest reductions in nutrient loading, coupled with several consecutive dry years likely facilitated the SAV resurgence. Furthermore, positive feedback processes may have played a role in the sudden nature of the recovery because they could have reinforced the state of the bed before and after the abrupt shift. I also found that scour and poor water clarity associated with sediment deposition during the 2011 flood event were mechanisms of plant loss. However, interactions between the bed, water flow, and waves served as mechanisms of resilience because these processes created favorable growing conditions (i.e., clear water, low flow velocities) in the inner core of the bed. Finally, I found that that interactions between physical and biogeochemical processes led to low nutrient concentrations inside the bed relative to outside the bed, which created conditions that precluded algal growth and reinforced vascular plant dominance. This work demonstrates that positive feedbacks play a central role in SAV resilience to both chronic eutrophication as well as acute storm events. Furthermore, I show that analysis of long-term ecological monitoring data, together with field measurements and experiments, can be an effective approach for understanding the mechanisms underlying ecosystem dynamics.
Resumo:
Thesis (Master, Biochemistry) -- Queen's University, 2016-10-14 02:44:01.604
Resumo:
Résumé : En imagerie médicale, il est courant d’associer plusieurs modalités afin de tirer profit des renseignements complémentaires qu’elles fournissent. Par exemple, la tomographie d’émission par positrons (TEP) peut être combinée à l’imagerie par résonance magnétique (IRM) pour obtenir à la fois des renseignements sur les processus biologiques et sur l’anatomie du sujet. Le but de ce projet est d’explorer les synergies entre l’IRM et la TEP dans le cadre d’analyses pharmacocinétiques. Plus spécifiquement, d’exploiter la haute résolution spatiale et les renseignements sur la perfusion et la perméabilité vasculaire fournis par l’IRM dynamique avec agent de contraste afin de mieux évaluer ces mêmes paramètres pour un radiotraceur TEP injecté peu de temps après. L’évaluation précise des paramètres de perfusion du radiotraceur devrait permettre de mieux quantifier le métabolisme et de distinguer l’accumulation spécifique et non spécifique. Les travaux ont porté sur deux radiotraceurs de TEP (18F-fluorodésoxyglucose [FDG] et 18F-fluoroéthyle-tyrosine [FET]) ainsi que sur un agent de contraste d’IRM (acide gadopentétique [Gd DTPA]) dans un modèle de glioblastome chez le rat. Les images ont été acquises séquentiellement, en IRM, puis en TEP, et des prélèvements sanguins ont été effectués afin d’obtenir une fonction d’entrée artérielle (AIF) pour chaque molécule. Par la suite, les images obtenues avec chaque modalité ont été recalées et l’analyse pharmacocinétique a été effectuée par régions d’intérêt (ROI) et par voxel. Pour le FDG, un modèle irréversible à 3 compartiments (2 tissus) a été utilisé conformément à la littérature. Pour la FET, il a été déterminé qu’un modèle irréversible à 2 tissus pouvait être appliqué au cerveau et à la tumeur, alors qu’un modèle réversible à 2 tissus convenait aux muscles. La possibilité d’effectuer une conversion d’AIF (sanguine ou dérivée de l’image) entre le Gd DTPA et la FET, ou vice versa, a aussi été étudiée et s’est avérée faisable dans le cas des AIF sanguines obtenues à partir de l’artère caudale, comme c’est le cas pour le FDG. Finalement, l’analyse pharmacocinétique combinée IRM et TEP a relevé un lien entre la perfusion du Gd-DTPA et du FDG, ou de la FET, pour les muscles, mais elle a démontré des disparités importantes dans la tumeur. Ces résultats soulignent la complexité du microenvironnement tumoral (p. ex. coexistence de divers modes de transport pour une même molécule) et les nombreux défis rencontrées lors de sa caractérisation chez le petit animal.
Resumo:
Previous results provided evidence that Cratylia mollis seed lectin (Cramoll 1,4) promotes Trypanosoma cruzi epimastigotes death by necrosis via a mechanism involving plasma membrane permeabilization to Ca(2+) and mitochondrial dysfunction due to matrix Ca(2+) overload. In order to investigate the mechanism of Ca(2+) -induced mitochondrial impairment, experiments were performed analyzing the effects of this lectin on T. cruzi mitochondrial fraction and in isolated rat liver mitochondria (RLM), as a control. Confocal microscopy of T. cruzi whole cell revealed that Cramoll 1,4 binding to the plasma membrane glycoconjugates is followed by its internalization and binding to the mitochondrion. Electrical membrane potential (∆Ψm ) of T. cruzi mitochondrial fraction suspended in a reaction medium containing 10 μM Ca(2+) was significantly decreased by 50 μg/ml Cramoll 1,4 via a mechanism insensitive to cyclosporine A (CsA, membrane permeability transition (MPT) inhibitor), but sensitive to catalase or 125 mM glucose. In RLM suspended in a medium containing 10 μM Ca(2+) this lectin, at 50 μg/ml, induced increase in the rate of hydrogen peroxide release, mitochondrial swelling, and ∆Ψm disruption. All these mitochondrial alterations were sensitive to CsA, catalase, and EGTA. These results indicate that Cramoll 1, 4 leads to inner mitochondrial membrane permeabilization through Ca(2+) dependent mechanisms in both mitochondria. The sensitivity to CsA in RLM characterizes this lectin as a MPT inducer and the lack of CsA effect identifies a CsA-insensitive MPT in T. cruzi mitochondria.
Resumo:
Cardiac arrest during heart surgery is a common procedure and allows the surgeon to perform surgical procedures in an environment free of blood and movement. Using a model of isolated rat heart, the authors compare a new cardioplegic solution containing histidine-tryptophan-glutamate (group 2) with the histidine-tryptophan-alphacetoglutarate (group 1) routinely used by some cardiac surgeons. To assess caspase, IL-8 and KI-67 in isolated rat hearts using immunohistochemistry. 20 Wistar male rats were anesthetized and heparinized. The chest was opened, cardioctomy was performed and 40 ml/kg of the appropriate cardioplegic solution was infused. The hearts were kept for 2 hours at 4ºC in the same solution, and thereafter, placed in the Langendorff apparatus for 30 minutes with Ringer-Locke solution. Immunohistochemistry analysis of caspase, IL-8, and KI-67 were performed. The concentration of caspase was lower in group 2 and Ki-67 was higher in group 2, both P<0.05. There was no statistical difference between the values of IL-8 between the groups. Histidine-tryptophan-glutamate solution was better than histidine-tryptophan-alphacetoglutarate solution because it reduced caspase (apoptosis), increased KI-67 (cell proliferation), and showed no difference in IL-8 levels compared to group 1. This suggests that the histidine-tryptophan-glutamate solution was more efficient than the histidine-tryptophan-alphacetoglutarate for the preservation of hearts of rat cardiomyocytes.
Resumo:
Although cartilaginous tumors have low microvascular density, vessels are important for the provision of nutrition so that the tumor can grow and generate metastasis. The aim of this study was to assess the value of the vascular pattern classification as a prognostic tool in chondrosarcomas (CSs) and its relation with vascular endothelial growth factor (VEGF) expression. This was a retrospective study of 21 enchondromas and 57 conventional CSs. Clinical data and outcome were retrieved from medical files. CSs histologic grades (on a scale of 1 to 3) were determined according to the World Health Organization classification. The vascular pattern (on a scale of A to C) was assessed through CD34, according to Kalinski. CD105 and VEGF were also evaluated. Poor outcome was significantly associated with vascular pattern groups B and C. Higher vascular pattern were 6.5 times more frequent in moderate-grade and high-grade CSs than in grade 1 CS. On multivariate analysis, a clear correlation was found between VEGF overexpression and B/C vascular patterns. Only 18 (benign and malignant) tumors stained for CD105. The results point to the use of the vascular pattern classification as a prognostic tool in CSs and to differentiate low-grade from moderate-grade/high-grade CSs. Vascular pattern might be also used to complement histologic grade, VEGF immunostaining, and microvascular density, for indicating a patient's prognosis. Low-grade CSs develop under low neoangiogenesis, which conforms to the slow growth rate of these tumors.
Resumo:
Cryosurgery is an efficient therapeutic technique used to treat benign and malignant cutaneous diseases. The primary active mechanism of cryosurgery is related to vascular effects on treated tissue. After a cryosurgical procedure, exuberant granulation tissue is formed at the injection site, probably as a result of angiogenic stimulation of the cryogen and inflammatory response, particularly in endothelial cells. To evaluate the angiogenic effects of freezing, as part of the phenomenon of healing rat skin subjected to previous injury. Two incisions were made in each of the twenty rats, which were divided randomly into two groups of ten. After 3 days, cryosurgery with liquid nitrogen was performed in one of incisions. The rats' samples were then collected, cut and stained to conduct histopathological examination, to assess the local angiogenesis in differing moments and situations. It was possible to demonstrate that cryosurgery, in spite of promoting cell death and accentuated local inflammation soon after its application, induces quicker cell proliferation in the affected tissue and maintenance of this rate in a second phase, than in tissue healing without this procedure. These findings, together with the knowledge that there is a direct relationship between mononuclear cells and neovascularization (the development of a rich system of new vessels in injury caused by cold), suggest that cryosurgery possesses angiogenic stimulus, even though complete healing takes longer to occur. The significance level for statistical tests was 5% (p<0,05).