956 resultados para random amplification of polymorfic DNA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intramolecular chain diffusion is an elementary process in the conformational fluctuations of the DNA hairpin-loop. We have studied the temperature and viscosity dependence of a model DNA hairpin-loop by FRET (fluorescence resonance energy transfer) fluctuation spectroscopy (FRETfs). Apparent thermodynamic parameters were obtained by analyzing the correlation amplitude through a two-state model and are consistent with steady-state fluorescence measurements. The kinetics of closing the loop show non-Arrhenius behavior, in agreement with theoretical prediction and other experimental measurements on peptide folding. The fluctuation rates show a fractional power dependence (β = 0.83) on the solution viscosity. A much slower intrachain diffusion coefficient in comparison to that of polypeptides was derived based on the first passage time theory of SSS [Szabo, A., Schulten, K. & Schulten, Z. (1980) J. Chem. Phys. 72, 4350–4357], suggesting that intrachain interactions, especially stacking interaction in the loop, might increase the roughness of the free energy surface of the DNA hairpin-loop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following is an excerpt from the Executive Summary of the National Research Council Report.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homologous DNA recombination is a fundamental, regenerative process within living organisms. However, in most organisms, homologous recombination is a rare event, requiring a complex set of reactions and extensive homology. We demonstrate in this paper that Beta protein of phage λ generates recombinants in chromosomal DNA by using synthetic single-stranded DNAs (ssDNA) as short as 30 bases long. This ssDNA recombination can be used to mutagenize or repair the chromosome with efficiencies that generate up to 6% recombinants among treated cells. Mechanistically, it appears that Beta protein, a Rad52-like protein, binds and anneals the ssDNA donor to a complementary single-strand near the DNA replication fork to generate the recombinant. This type of homologous recombination with ssDNA provides new avenues for studying and modifying genomes ranging from bacterial pathogens to eukaryotes. Beta protein and ssDNA may prove generally applicable for repairing DNA in many organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed an efficient reverse-genetics protocol that uses expedient pooling and hybridization strategies to identify individual transfer-DNA insertion lines from a collection of 6000 independently transformed lines in as few as 36 polymerase chain reactions. We have used this protocol to systematically isolate Arabidopsis lines containing insertional mutations in individual cytochrome P450 genes. In higher plants P450 genes encode enzymes that perform an exceptionally wide range of functions, including the biosynthesis of primary metabolites necessary for normal growth and development, the biosynthesis of secondary products, and the catabolism of xenobiotics. Despite their importance, progress in assigning enzymatic function to individual P450 gene products has been slow. Here we report the isolation of the first 12 such lines, including one (CYP83B1-1) that displays a runt phenotype (small plants with hooked leaves), and three insertions in abundantly expressed genes. The DNAs used in this study are publicly available and can be used to systematically isolate mutants in Arabidopsis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Werner syndrome (WS) is a premature aging disorder where the affected individuals appear much older than their chronological age. The single gene that is defective in WS encodes a protein (WRN) that has ATPase, helicase and 3′→5′ exonuclease activities. Our laboratory has recently uncovered a physical and functional interaction between WRN and the Ku heterodimer complex that functions in double-strand break repair and V(D)J recombination. Importantly, Ku specifically stimulates the exonuclease activity of WRN. We now report that Ku enables the Werner exonuclease to digest through regions of DNA containing 8-oxoadenine and 8-oxoguanine modifications, lesions that have previously been shown to block the exonuclease activity of WRN alone. These results indicate that Ku significantly alters the exonuclease function of WRN and suggest that the two proteins function concomitantly in a DNA damage processing pathway. In support of this notion we also observed co-localization of WRN and Ku, particularly after DNA damaging treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental studies of complete mammalian genes and other genetic domains are impeded by the difficulty of introducing large DNA molecules into cells in culture. Previously we have shown that GST–Z2, a protein that contains three zinc fingers and a proline-rich multimerization domain from the polydactyl zinc finger protein RIP60 fused to glutathione S-transferase (GST), mediates DNA binding and looping in vitro. Atomic force microscopy showed that GST–Z2 is able to condense 130–150 kb bacterial artificial chromosomes (BACs) into protein–DNA complexes containing multiple DNA loops. Condensation of the DNA loops onto the Z2 protein–BAC DNA core complexes with cationic lipid resulted in particles that were readily transferred into multiple cell types in culture. Transfer of total genomic linear DNA containing amplified DHFR genes into DHFR– cells by GST–Z2 resulted in a 10-fold higher transformation rate than calcium phosphate co-precipitation. Chinese hamster ovarian cells transfected with a BAC containing the human TP53 gene locus expressed p53, showing native promoter elements are active after GST–Z2-mediated gene transfer. Because DNA condensation by GST–Z2 does not require the introduction of specific recognition sequences into the DNA substrate, condensation by the Z2 domain of RIP60 may be used in conjunction with a variety of other agents to provide a flexible and efficient non-viral platform for the delivery of large genes into mammalian cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Replication forks formed at bacterial origins often encounter template roadblocks in the form of DNA adducts and frozen protein–DNA complexes, leading to replication-fork stalling and inactivation. Subsequent correction of the corrupting template lesion and origin-independent assembly of a new replisome therefore are required for survival of the bacterium. A number of models for replication-fork restart under these conditions posit that nascent strand regression at the stalled fork generates a Holliday junction that is a substrate for subsequent processing by recombination and repair enzymes. We show here that early replication intermediates containing replication forks stalled in vitro by the accumulation of excess positive supercoils could be cleaved by the Holliday junction resolvases RusA and RuvC. Cleavage by RusA was inhibited by the presence of RuvA and was stimulated by RecG, confirming the presence of Holliday junctions in the replication intermediate and supporting the previous proposal that RecG could catalyze nascent strand regression at stalled replication forks. Furthermore, RecG promoted Holliday junction formation when replication intermediates in which the replisome had been inactivated were negatively supercoiled, suggesting that under intracellular conditions, the action of RecG, or helicases with similar activities, is necessary for the catalysis of nascent strand regression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rearrangements between tandem sequence homologies of various lengths are a major source of genomic change and can be deleterious to the organism. These rearrangements can result in either deletion or duplication of genetic material flanked by direct sequence repeats. Molecular genetic analysis of repetitive sequence instability in Escherichia coli has provided several clues to the underlying mechanisms of these rearrangements. We present evidence for three mechanisms of RecA-independent sequence rearrangements: simple replication slippage, sister-chromosome exchange-associated slippage, and single-strand annealing. We discuss the constraints of these mechanisms and contrast their properties with RecA-dependent homologous recombination. Replication plays a critical role in the two slipped misalignment mechanisms, and difficulties in replication appear to trigger rearrangements via all these mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heteroduplex joints are general intermediates of homologous genetic recombination in DNA genomes. A heteroduplex joint is formed between a single-stranded region (or tail), derived from a cleaved parental double-stranded DNA, and homologous regions in another parental double-stranded DNA, in a reaction mediated by the RecA/Rad51-family of proteins. In this reaction, a RecA/Rad51-family protein first forms a filamentous complex with the single-stranded DNA, and then interacts with the double-stranded DNA in a search for homology. Studies of the three-dimensional structures of single-stranded DNA bound either to Escherichia coli RecA or Saccharomyces cerevisiae Rad51 have revealed a novel extended DNA structure. This structure contains a hydrophobic interaction between the 2′ methylene moiety of each deoxyribose and the aromatic ring of the following base, which allows bases to rotate horizontally through the interconversion of sugar puckers. This base rotation explains the mechanism of the homology search and base-pair switch between double-stranded and single-stranded DNA during the formation of heteroduplex joints. The pivotal role of the 2′ methylene-base interaction in the heteroduplex joint formation is supported by comparing the recombination of RNA genomes with that of DNA genomes. Some simple organisms with DNA genomes induce homologous recombination when they encounter conditions that are unfavorable for their survival. The extended DNA structure confers a dynamic property on the otherwise chemically and genetically stable double-stranded DNA, enabling gene segment rearrangements without disturbing the coding frame (i.e., protein-segment shuffling). These properties may give an extensive evolutionary advantage to DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theory of the unzipping of double-stranded DNA is presented and is compared to recent micromanipulation experiments. It is shown that the interactions that stabilize the double helix and the elastic rigidity of single strands simply determine the sequence-dependent ≈12-pN force threshold for DNA strand separation. Using a semimicroscopic model of the binding between nucleotide strands, we show that the greater rigidity of the strands when formed into double-stranded DNA, relative to that of isolated strands, gives rise to a potential barrier to unzipping. The effects of this barrier are derived analytically. The force to keep the extremities of the molecule at a fixed distance, the kinetic rates for strand unpairing at fixed applied force, and the rupture force as a function of loading rate are calculated. The dependence of the kinetics and of the rupture force on molecule length is also analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have analyzed the level of intraindividual sequence variability (heteroplasmy) of mtDNA in human brain by denaturing gradient gel electrophoresis and sequencing. Single base substitutions, as well as insertions or deletions of single bases, were numerous in the noncoding control region (D-loop), and 35-45% of the molecules from a single tissue showed sequence differences. By contrast, heteroplasmy in coding regions was not detected. The lower level of heteroplasmy in the coding regions is indicative of selection against deleterious mutations. Similar levels of heteroplasmy were found in two brain regions from the same individual, while no heteroplasmy was detected in blood. Thus, heteroplasmy seems to be more frequent in nonmitotic tissues. We observed a 7.7-fold increase in the frequency of deletions/insertions and a 2.2-fold increase in the overall frequency of heteroplasmic mutations in two individuals aged 96 and 99, relative to an individual aged 28. Our results show that intraindividual sequence variability occurs at a high frequency in the noncoding regions of normal human brain and indicate that small insertions and deletions might accumulate with age at a lower rate than large rearrangements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed improved procedures for the isolation of deletion mutant, point mutant, and recombinant herpesvirus saimiri. These procedures take advantage of the absence of NotI and AscI restriction enzyme sites within the viral genome and use reporter genes for the identification of recombinant viruses. Genes for secreted engineered alkaline phosphatase and green fluorescent protein were placed under simian virus 40 early promoter control and flanked by NotI and AscI restriction sites. When permissive cells were cotransfected with herpesvirus saimiri virion DNA and one of the engineered reporter genes cloned within herpesvirus saimiri sequences, recombinant viruses were readily identified and purified on the basis of expression of the reporter gene. Digestion of recombinant virion DNA with NotI or AscI was used to delete the reporter gene from the recombinant herpesvirus saimiri. Replacement of the reporter gene can be achieved by NotI or AscI digestion of virion DNA and ligation with a terminally matched fragment or, alternatively, by homologous recombination in cotransfected cells. Any gene can, in theory, be cloned directly into the virion DNA when flanked by the appropriate NotI or AscI sites. These procedures should be widely applicable in their general form to most or all herpesviruses that replicate permissively in cultured cells.