919 resultados para query reformulation, search pattern, search strategy
Resumo:
This paper discusses the results and propositions of organizational knowledge management research conducted in the period 2001-2007. This longitudinal study had the unique goal of investigating and analyzing “Knowledge Management” (KM) processes effectively implemented in world class organizations. The main objective was to investigate and analyze the conceptions, motivations, practices, metrics and results of KM processes implemented in different industries. The first set of studies involved 20 world cases related in the literature and served as a basis for a theoretical framework entitled “KM Integrative Conceptual Mapping Proposition”. This theoretical proposal was then tested in a qualitative study in three large organizations in Brazil. The results of the qualitative study validated the mapping proposition and left questions for new research concerning the implementation of a knowledge-based organizational model strategy.
Resumo:
International audience
Resumo:
Die Arbeit geht dem Status quo der unternehmensweiten Suche in österreichischen Großunternehmen nach und beleuchtet Faktoren, die darauf Einfluss haben. Aus der Analyse des Ist-Zustands wird der Bedarf an Enterprise-Search-Software abgeleitet und es werden Rahmenbedingungen für deren erfolgreiche Einführung skizziert. Die Untersuchung stützt sich auf eine im Jahr 2009 durchgeführte Onlinebefragung von 469 österreichischen Großunternehmen (Rücklauf 22 %) und daran anschließende Leitfadeninterviews mit zwölf Teilnehmern der Onlinebefragung. Der theoretische Teil verortet die Arbeit im Kontext des Informations- und Wissensmanagements. Der Fokus liegt auf dem Ansatz der Enterprise Search, ihrer Abgrenzung gegenüber der Suche im Internet und ihrem Leistungsspektrum. Im empirischen Teil wird zunächst aufgezeigt, wie die Unternehmen ihre Informationen organisieren und welche Probleme dabei auftreten. Es folgt eine Analyse des Status quo der Informationssuche im Unternehmen. Abschließend werden Bekanntheit und Einsatz von Enterprise-Search-Software in der Zielgruppe untersucht sowie für die Einführung dieser Software nötige Rahmenbedingungen benannt. Defizite machen die Befragten insbesondere im Hinblick auf die übergreifende Suche im Unternehmen und die Suche nach Kompetenzträgern aus. Hier werden Lücken im Wissensmanagement offenbar. 29 % der Respondenten der Onlinebefragung geben zudem an, dass es in ihren Unternehmen gelegentlich bis häufig zu Fehlentscheidungen infolge defizitärer Informationslagen kommt. Enterprise-Search-Software kommt in 17 % der Unternehmen, die sich an der Onlinebefragung beteiligten, zum Einsatz. Die durch Enterprise-Search-Software bewirkten Veränderungen werden grundsätzlich positiv beurteilt. Alles in allem zeigen die Ergebnisse, dass Enterprise-Search-Strategien nur Erfolg haben können, wenn man sie in umfassende Maßnahmen des Informations- und Wissensmanagements einbettet.
Resumo:
Conventional web search engines are centralised in that a single entity crawls and indexes the documents selected for future retrieval, and the relevance models used to determine which documents are relevant to a given user query. As a result, these search engines suffer from several technical drawbacks such as handling scale, timeliness and reliability, in addition to ethical concerns such as commercial manipulation and information censorship. Alleviating the need to rely entirely on a single entity, Peer-to-Peer (P2P) Information Retrieval (IR) has been proposed as a solution, as it distributes the functional components of a web search engine – from crawling and indexing documents, to query processing – across the network of users (or, peers) who use the search engine. This strategy for constructing an IR system poses several efficiency and effectiveness challenges which have been identified in past work. Accordingly, this thesis makes several contributions towards advancing the state of the art in P2P-IR effectiveness by improving the query processing and relevance scoring aspects of a P2P web search. Federated search systems are a form of distributed information retrieval model that route the user’s information need, formulated as a query, to distributed resources and merge the retrieved result lists into a final list. P2P-IR networks are one form of federated search in routing queries and merging result among participating peers. The query is propagated through disseminated nodes to hit the peers that are most likely to contain relevant documents, then the retrieved result lists are merged at different points along the path from the relevant peers to the query initializer (or namely, customer). However, query routing in P2P-IR networks is considered as one of the major challenges and critical part in P2P-IR networks; as the relevant peers might be lost in low-quality peer selection while executing the query routing, and inevitably lead to less effective retrieval results. This motivates this thesis to study and propose query routing techniques to improve retrieval quality in such networks. Cluster-based semi-structured P2P-IR networks exploit the cluster hypothesis to organise the peers into similar semantic clusters where each such semantic cluster is managed by super-peers. In this thesis, I construct three semi-structured P2P-IR models and examine their retrieval effectiveness. I also leverage the cluster centroids at the super-peer level as content representations gathered from cooperative peers to propose a query routing approach called Inverted PeerCluster Index (IPI) that simulates the conventional inverted index of the centralised corpus to organise the statistics of peers’ terms. The results show a competitive retrieval quality in comparison to baseline approaches. Furthermore, I study the applicability of using the conventional Information Retrieval models as peer selection approaches where each peer can be considered as a big document of documents. The experimental evaluation shows comparative and significant results and explains that document retrieval methods are very effective for peer selection that brings back the analogy between documents and peers. Additionally, Learning to Rank (LtR) algorithms are exploited to build a learned classifier for peer ranking at the super-peer level. The experiments show significant results with state-of-the-art resource selection methods and competitive results to corresponding classification-based approaches. Finally, I propose reputation-based query routing approaches that exploit the idea of providing feedback on a specific item in the social community networks and manage it for future decision-making. The system monitors users’ behaviours when they click or download documents from the final ranked list as implicit feedback and mines the given information to build a reputation-based data structure. The data structure is used to score peers and then rank them for query routing. I conduct a set of experiments to cover various scenarios including noisy feedback information (i.e, providing positive feedback on non-relevant documents) to examine the robustness of reputation-based approaches. The empirical evaluation shows significant results in almost all measurement metrics with approximate improvement more than 56% compared to baseline approaches. Thus, based on the results, if one were to choose one technique, reputation-based approaches are clearly the natural choices which also can be deployed on any P2P network.
Resumo:
This paper presents our work at 2016 FIRE CHIS. Given a CHIS query and a document associated with that query, the task is to classify the sentences in the document as relevant to the query or not; and further classify the relevant sentences to be supporting, neutral or opposing to the claim made in the query. In this paper, we present two different approaches to do the classification. With the first approach, we implement two models to satisfy the task. We first implement an information retrieval model to retrieve the sentences that are relevant to the query; and then we use supervised learning method to train a classification model to classify the relevant sentences into support, oppose or neutral. With the second approach, we only use machine learning techniques to learn a model and classify the sentences into four classes (relevant & support, relevant & neutral, relevant & oppose, irrelevant & neutral). Our submission for CHIS uses the first approach.