916 resultados para prostate epithelium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The present study was aimed at evaluating the contribution of transrectal prostate ultrasound in the screening for prostate neoplasias and in the guidance of prostate biopsies. Materials and Methods: Prospective study developed over a one-year period. All the patients with indication for prostate biopsy were evaluated. Regardless of PSA values, the patients underwent ultrasound in order to identify suspicious nodules (confirmed by two observers). Sextant biopsy was subsequently performed. In cases of finding suspicious nodules, an additional puncture directed to such nodules was done. Results: In a total of 155 cases the prevalence of malignancy was of 53%. Suspicious nodules were detected in 34 patients, and 25 where malignant (positive predictive value of 74%). The specificity and sensitivity for suspicious nodules were 88% and 31% respectively. Comparatively with the randomly obtained sextant specimens, the rate of findings of neoplasia was higher in the specimens obtained with puncture directed to the nodule (p = 0.032). No statistically significant difference was observed in the Gleason score for both types of specimens (p = 0.172). Conclusion: The high positive predictive value and the high rate of findings of neoplasia in specimens of suspicious nodules should be taken into consideration in the future. The authors suggest a biopsy technique similar to the one described in the present study (sextant biopsy plus puncture directed to the suspicious nodule).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'adoption de l'IRM dans le parcours diagnostique a déterminé la transition des biopsies aléatoires aux biopsies ciblées vers les lésions visibles à l'imagerie. L'utilisation de logiciels rendant possible la fusion d'images IRM et échographiques permet d'améliorer significativement la précision diagnostique de ces biopsies. De plus, pour déterminer l'éligibilité d'un patient à une thérapie focale, davantage de précision diagnostique est requise au niveau de toute la glande ; par conséquent, des biopsies avec une densité d'échantillonnage plus élevée par voie transpérinéale peuvent être proposées.Les nouvelles techniques de biopsie de la prostate permettent une prise en charge personnalisée grâce à une meilleure caractérisation de l'agressivité et de l'extension locale du cancer de la prostate. The adoption of multiparametric MRI within the diagnostic pathway has allowed urologists to move from random biopsy to targeted biopsy directed towards MR-visible lesions. The use of software for MR to TRUS fusion may enhance the diagnostic accuracy of targeted biopsy. To determine the eligibility for tissue-preserving approaches, further precision is required, and template prostate mapping biopsy may be offered. The employment of novel biopsy techniques provide better characterisation of the disease, and allows a tailored approach to a single subject.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Objective: To evaluate the rectal volume influence on prostate motion during three-dimensional conformal radiotherapy (3D-CRT) for prostate cancer. Materials and Methods: Fifty-one patients with prostate cancer underwent a series of three computed tomography scans including an initial planning scan and two subsequent scans during 3D-CRT. The organs of interest were outlined. The prostate contour was compared with the initial CT images considering the anterior, posterior, superior, inferior and lateral edges of the organ. Variations in the anterior limits and volume of the rectum were assessed and correlated with prostate motion in the anteroposterior direction. Results: The maximum range of prostate motion was observed in the superoinferior direction, followed by the anteroposterior direction. A significant correlation was observed between prostate motion and rectal volume variation ( p = 0.037). A baseline rectal volume superior to 70 cm3 had a significant influence on the prostate motion in the anteroposterior direction ( p = 0.045). Conclusion: The present study showed a significant interfraction motion of the prostate during 3D-CRT with greatest variations in the superoinferior and anteroposterior directions, and that a large rectal volume influences the prostate motion with a cutoff value of 70 cm3. Therefore, the treatment of patients with a rectal volume > 70 cm3 should be re-planned with appropriate rectal preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence to support a significant role for chronic non-bacterial, prostatic inflammation in the development of human voiding dysfunction and prostate cancer. Their increased prevalence with age suggests that the decrease of testosterone concentration and/or the ratio of testosterone-to-estradiol in serum may have a role in their development. The main objective of this study was to explore prostatic inflammation and its relationship with voiding dysfunction and prostate carcinogenesis by developing an experimental model. A novel selective estrogen receptor modulator (SERM), fispemifene, was tested for the prevention and treatment of prostatic inflammation in this model. Combined treatment of adult Noble rats with testosterone and estradiol for 3 to 6 weeks induced gradually developing prostatic inflammation in the dorsolateral prostatic lobes. Inflammatory cells, mainly T-lymphocytes, were first seen around capillaries. Thereafter, the lymphocytes migrated into the stroma and into periglandular space. When the treatment time was extended to 13 weeks, the number of inflamed acini increased. Urodynamical recordings indicated voiding dysfunction. When the animals had an above normal testosterone and estradiol concentrations but still had a decreased testosterone-to-estradiol ratio in serum, they developed obstructive voiding. Furthermore, they developed precancerous lesions and prostate cancers in the ducts of the dorsolateral prostatic lobes. Interestingly, inflammatory infiltrates were observed adjacent to precancerous lesions but not in the adjacency of adenocarcinomas suggesting that inflammation has a role in the early stages of prostate carcinogenesis. Fispemifene, a novel SERM tested in this experimental model, showed anti-inflammatory action by attenuating the number of inflamed acini in the dorsolateral prostate. Fispemifene exhibited also antiestrogenic properties by decreasing expression of estrogen-induced biomarkers in the acinar epithelium. These findings suggest that SERMs could be considered as a new therapeutic possibility in the prevention and in the treatment of chronic prostatic inflammation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular characterization of radical prostatectomy specimens after systemic therapy may identify a gene expression profile for resistance to therapy. This study assessed tumor cells from patients with prostate cancer participating in a phase II neoadjuvant docetaxel and androgen deprivation trial to identify mediators of resistance. Transcriptional level of 93 genes from a docetaxel-resistant prostate cancer cell lines microarray study was analyzed by TaqMan low-density arrays in tumors from patients with high-risk localized prostate cancer (36 surgically treated, 28 with neoadjuvant docetaxel þ androgen deprivation). Gene expression was compared between groups and correlated with clinical outcome. VIM, AR and RELA were validated by immunohistochemistry. CD44 and ZEB1 expression was tested by immunofluorescence in cells and tumor samples. Parental and docetaxel-resistant castration-resistant prostate cancer cell lines were tested for epithelial-to-mesenchymal transition (EMT) markers before and after docetaxel exposure. Reversion of EMT phenotype was investigated as a docetaxel resistance reversion strategy. Expression of 63 (67.7%) genes differed between groups (P < 0.05), including genes related to androgen receptor, NF-k B transcription factor, and EMT. Increased expression of EMT markers correlated with radiologic relapse. Docetaxel-resistant cells had increased EMT and stem-like cell markers expression. ZEB1 siRNA transfection reverted docetaxel resistance and reduced CD44 expression in DU-145R and PC-3R. Before docetaxel exposure, a selected CD44 þ subpopulation of PC-3 cells exhibited EMT phenotype and intrinsic docetaxel resistance; ZEB1/CD44 þ subpopulations were found in tumor cell lines and primary tumors; this correlated with aggressive clinical behavior. This study identifies genes potentially related to chemotherapy resistance and supports evi-dence of the EMT role in docetaxel resistance and adverse clinical behavior in early prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hormone-dependent diseases, e.g. cancers, rank high in mortality in the modern world, and thus, there is an urgent need for new drugs to treat these diseases. Although the diseases are clearly hormone-dependent, changes in circulating hormone concentrations do not explain all the pathological processes observed in the diseased tissues. A more inclusive explanation is provided by intracrinology – a regulation of hormone concentrations at the target tissue level. This is mediated by the expression of a pattern of steroid-activating and -inactivating enzymes in steroid target tissues, thus enabling a concentration gradient between the blood circulation and the tissue. Hydroxysteroid (17beta) dehydrogenases (HSD17Bs) form a family of enzymes that catalyze the conversion between low active 17-ketosteroids and highly active 17beta-hydroxysteroids. HSD17B1 converts low active estrogen (E1) to highly active estradiol (E2) with high catalytic efficiency, and altered HSD17B1 expression has been associated with several hormone-dependent diseases, including breast cancer, endometriosis, endometrial hyperplasia and cancer, and ovarian epithelial cancer. Because of its putative role in E2 biosynthesis in ovaries and peripheral target tissues, HSD17B1 is considered to be a promising drug target for estrogen-dependent diseases. A few studies have indicated that the enzyme also has androgenic activity, but they have been ignored. In the present study, transgenic mice overexpressing human HSD17B1 (HSD17B1TG mice) were used to study the effects of the enzyme in vivo. Firstly, the substrate specificity of human HSD17B1 was determined in vivo. The results indicated that human HSD17B1 has significant androgenic activity in female mice in vivo, which resulted in increased fetal testosterone concentration and female disorder of sexual development appearing as masculinized phenotype (increased anogenital distance, lack of nipples, lack of vaginal opening, combination of vagina with urethra, enlarged Wolffian duct remnants in the mesovarium and enlarged female prostate). Fetal androgen exposure has been linked to polycystic ovary syndrome (PCOS) and metabolic syndrome during adulthood in experimental animals and humans, but the genes involved in PCOS are largely unknown. A putative mechanism to accumulate androgens during fetal life by HSD17B1 overexpression was shown in the present study. Furthermore, as a result of prenatal androgen exposure locally in the ovaries, HSD17B1TG females developed ovarian benign serous cystadenomas in adulthood. These benign lesions are precursors of low-grade ovarian serous tumors. Ovarian cancer ranks fifth in mortality of all female cancers in Finland, and most of the ovarian cancers arise from the surface epithelium. The formation of the lesions was prevented by prenatal antiandrogen treatment and by transplanting wild type (WT) ovaries prepubertally into HSD17B1TG females. The results obtained in our non-clinical TG mouse model, together with a literature analysis, suggest that HSD17B1 has a role in ovarian epithelial carcinogenesis, and especially in the development of serous tumors. The role of androgens in ovarian carcinogenesis is considered controversial, but the present study provides further evidence for the androgen hypothesis. Moreover, it directly links HSD17B1-induced prenatal androgen exposure to ovarian epithelial carcinogenesis in mice. As expected, significant estrogenic activity was also detected for human HSD17B1. HSD17B1TG mice had enhanced peripheral conversion of E1 to E2 in a variety of target tissues, including the uterus. Furthermore, this activity was significantly decreased by treatments with specific HSD17B1 inhibitors. As a result, several estrogen-dependent disorders were found in HSD17B1TG females. Here we report that HSD17B1TG mice invariably developed endometrial hyperplasia and failed to ovulate in adulthood. As in humans, endometrial hyperplasia in HSD17B1TG females was reversible upon ovulation induction, triggering a rise in circulating progesterone levels, and in response to exogenous progestins. Remarkably, treatment with a HSD17B1 inhibitor failed to restore ovulation, yet completely reversed the hyperplastic morphology of epithelial cells in the glandular compartment. We also demonstrate that HSD17B1 is expressed in normal human endometrium, hyperplasia, and cancer. Collectively, our non-clinical data and literature analysis suggest that HSD17B1 inhibition could be one of several possible approaches to decrease endometrial estrogen production in endometrial hyperplasia and cancer. HSD17B1 expression has been found in bones of humans and rats. The non-clinical data in the present study suggest that human HSD17B1 is likely to have an important role in the regulation of bone formation, strength and length during reproductive years in female mice. Bone density in HSD17B1TG females was highly increased in femurs, but in lesser amounts also in tibias. Especially the tibia growth plate, but not other regions of bone, was susceptible to respond to HSD17B1 inhibition by increasing bone length, whereas the inhibitors did not affect bone density. Therefore, HSD17B1 inhibitors could be safer than aromatase inhibitors in regard to bone in the treatment of breast cancer and endometriosis. Furthermore, diseases related to improper growth, are a promising new indication for HSD17B1 inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer is generally a slowly developing disease. However, some cancers develop into an aggressive, metastasic and consequently life-threatening state. The mechanisms of prostate cancer spread are still mainly unidentified but hormones and growth factors are known to been involved. The forming of new blood vessels i.e. angiogenesis is crucial for tumor growth. Blood vessels and lymphatic vessels are also prominent routes for metastasis. Both angiogenic and lymphangiogenic factors are overexpressed in prostate cancer. We established an in vivo model to study the factors effecting human prostate cancer growth and metastasis. Tumors were produced by the orthotopic inoculation of PC-3 prostate cancer cells into the prostates of immunodeficient mice. Like human prostate tumors, these tumors metastasized to prostate-draining lymph nodes. Treatment of the mice with the bisphosphonate alendronate known to decrease prostate cancer cell invasion in vitro inhibited metastasis and decreased tumor growth. Decreased tumor growth was associated with decreased angiogenesis and increased apoptosis of tumor cells. To elucidate the role of angiogenesis in prostate cancer progression, we studied the growth of orthotopic PC-3 tumors overexpressing fibroblast growth factor b (FGF8b) known to be expressed in human prostate cancer. FGF8b increased tumor growth and angiogenesis, which were both associated with a characteristic gene expression pattern. To study the role of lymphangiogenesis, we produced orthotopic PC-3 tumors overexpressing vascular endothelial growth factor C (VEGF-C). Blocking of VEGF-C receptor (VEGFR3) completely inhibited lymph node metastasis whereas overexpression of VEGF-C increased tumor growth and angiogenesis. VEGF-C also increased lung metastases but, surprisingly, decreased spread to lymph nodes. This suggests that the expanded vascular network was primarily used as a route for tumor spreading. Finally, the functionality of the capillary network in subcutaneous FGF8b-overexpressing PC-3 tumors was compared to that of tumors overexpressing VEGF. Both tumors showed angiogenic morphology and grew faster than control tumors. However, FGF8b tumors were hypoxic and their perfusion and oxygenation was poor compared with VEGF tumors. This suggests that the growth advantage of FGF8b tumors is more likely due to stimulated proliferation than effective angiogenesis. In conclusion, these results show that orthotopic prostate tumors provide a useful model to explore the mechanisms of prostate cancer growth and metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metastatic bone lesions are commonly associated with prostate cancer affecting approximately 60-80% of the patients. The progression of prostate cancer into an advanced stage is a complex process and its molecular mechanisms are poorly understood. So far, no curative treatment is available for advanced stages of prostate cancer. Bisphosphonates (BPs) are synthetic pyrophosphate analogues, which are used as therapeutics for various metabolic bone diseases because of their ability to inhibit osteoclastic bone resorption. Nitrogen-containing bisphosphonates block the function of osteoclasts by disturbing the vesicular traffic and the mevalonate pathway -related enzymes, for example farnesyl diphosphate synthase, which is involved in post-translational isoprenylation of small GTPases. In addition, the anti-proliferative, anti-invasive and pro-apoptotic effects of nitrogen-containing bisphosphonates on various cancer cell lines have been reported. The aim of this thesis work was to clarify the effects of bisphosphonates on prostate cancer cells, focusing on the mechanisms of adhesion, invasion and migration. Furthermore, the role of the mevalonate pathway and prenylation reactions in invasion and regulation of the cytoskeleton of prostate cancer cells were examined. Finally, the effects of alendronate on cytoskeleton- and actin-related proteins in prostate cancer cells were studied in vitro and in vivo. The results showed that the nitrogen-containing bisphosphonate alendronate inhibited the adhesion of prostate cancer cells to various extracellular matrix proteins and migration and invasion in vitro. Inhibition of invasion and migration was reversed by mevalonate pathway intermediates. The blockage of the prenylation transferases GGTase I and FTase inhibited the invasion, migration and actin organization of prostate cancer cells. The marked decrease of cofilin was observed by the prenylation inhibitors used. Inhibition of GGTase I also disrupted the regulation of focal adhesion kinase and paxillin. In addition, alendronate disrupted the cytoskeletal organization and decreased the level of cofilin in vitro and in vivo. The decrease of the cofilin level by alendronate could be one of the key mechanisms behind the observed inhibition of migration and invasion. Based on the effects of nitrogen-containing bisphosphonates on tumor cell invasion and cytoskeletal organization, they can be suggested to be developed as therapeutics for inhibiting prostate cancer metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TMPRSS2–ERG is the most frequent type of genomic rearrangement present in prostate tumors, in which the 5- prime region of the TMPRSS2 gene is fused to the ERG oncogene. TMPRSS2, containing androgen response elements (AREs), is regulated by androgens in the prostate. The truncated TMPRSS2-ERG fusion transcript is overexpressed in half of the prostate cancer patients. The formation of TMPRSS2-ERG transcript is an early event in prostate carcinogenesis and previous in vivo and in vitro studies have shown ectopic ERG expression to be associated with increased cell invasion. However, the molecular function of ERG and its role in cell signaling is poorly understood. In this study, genomic rearrangement of ERG with TMPRSS2 was studied by using comparative genomic hybridization (CGH) in prostate cancer samples. The biological processes associated with the ERG oncogene expression in prostate epithelial cells were studied, and the results were compared with findings observed in clinical prostate tumor samples. The gene expression data indicated that increased WNT signaling and loss of cell adhesion were a characteristic of TMPRSS2- ERG fusion positive prostate tumor samples. Up- regulation of WNT pathway genes were present in ERG positive prostate tumors, with frizzled receptor 4 (FZD4) presenting with the highest association with ERG overexpression, as verified by quantitative reverse transcription-PCR, immunostaining, and immunoblotting in TMPRSS2-ERG positive VCaP prostate cancer cells. Furthermore, ERG and FZD4 silencing increased cell adhesion by inducing active β1-integrin and E-cadherin expression in VCaP cells. Furthermore, we found a novel inhibitor, 4-(chloromethyl) benzoyl chloride which inhibited the WNT signaling and induced similar phenotypic effects as observed after ERG or FZD4 down regulation in VCaP cells. In conclusion, this work deepens our understanding on the complex oncogenic mechanisms of ERG in prostate cancer that may help in developing drugs against TMPRSS2-ERG positive tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancers form a heterogeneous group of diseases and there is a need for novel biomarkers, and for more efficient and targeted methods of treatment. In this thesis, the potential of microarray data, RNA interference (RNAi) and compound screens were utilized in order to identify novel biomarkers, drug targets and drugs for future personalized prostate cancer therapeutics. First, a bioinformatic mRNA expression analysis covering 9873 human tissue and cell samples, including 349 prostate cancer and 147 normal prostate samples, was used to distinguish in silico prevalidated putative prostate cancer biomarkers and drug targets. Second, RNAi based high-throughput (HT) functional profiling of 295 prostate and prostate cancer tissue specific genes was performed in cultured prostate cancer cells. Third, a HT compound screen approach using a library of 4910 drugs and drug-like molecules was exploited to identify potential drugs inhibiting prostate cancer cell growth. Nine candidate drug targets, with biomarker potential, and one cancer selective compound were validated in vitro and in vivo. In addition to androgen receptor (AR) signaling, endoplasmic reticulum (ER) function, arachidonic acid (AA) pathway, redox homeostasis and mitosis were identified as vital processes in prostate cancer cells. ERG oncogene positive cancer cells exhibited sensitivity to induction of oxidative and ER stress, whereas advanced and castrate-resistant prostate cancer (CRPC) could be potentially targeted through AR signaling and mitosis. In conclusion, this thesis illustrates the power of systems biological data analysis in the discovery of potential vulnerabilities present in prostate cancer cells, as well as novel options for personalized cancer management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer initially responds to hormone-based therapeutics such as anti-androgen treatment or chemotherapeutics but eventually becomes resistant. Novel treatment options are therefore urgently needed. This thesis study applied a high-throughput screen of 4910 known drugs and drug-like small molecules to identify compounds that selectively inhibit growth of prostate cancer cells. In addition, the mechanisms underlying the cellular sensitivity to potent cancer selective compounds were addressed. Surprisingly, many of the compounds currently used in the clinics or studied in clinical trials were not cancer-selective. Only four drugs, aldehyde dehydrogenase inhibitor disulfiram (Antabus), antibiotic ionophore monensin, histone deacetylase inhibitor tricostatin A and fungicide thiram inhibited prostate cancer cell growth at nanomolar concentrations without major effects on non-malignant prostate epithelial cells. Disulfiram, monensin and a structurally similar compound to monensin, salinomycin, induced oxidative stress and inhibited aldehyde dehydrogenase activity. Moreover, monensin and salinomycin reduced androgen receptor signalling and steroidogenesis, enforced cell differentiation and reduced the overall levels of cancer stem cells. Taken together, novel and potentially prostate cancer-selective therapeutic agents were identified in this study, including the description of a multitude of intoxicating mechanisms such as those relating to oxidative stress. The results provide novel insights into prostate cancer biology and exemplify useful means of considering novel approaches to cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate-specific antigen (PSA) is a marker that is commonly used in estimating prostate cancer risk. Prostate cancer is usually a slowly progressing disease, which might not cause any symptoms whatsoever. Nevertheless, some cases of cancer are aggressive and need to be treated before they become life-threatening. However, the blood PSA concentration may rise also in benign prostate diseases and using a single total PSA (tPSA) measurement to guide the decision on further examinations leads to many unnecessary biopsies, over-detection, and overtreatment of indolent cancers which would not require treatment. Therefore, there is a need for markers that would better separate cancer from benign disorders, and would also predict cancer aggressiveness. The aim of this study was to evaluate whether intact and nicked forms of free PSA (fPSA-I and fPSA-N) or human kallikrein-related peptidase 2 (hK2) could serve as new tools in estimating prostate cancer risk. First, the immunoassays for fPSA-I and free and total hK2 were optimized so that they would be less prone to assay interference caused by interfering factors present in some blood samples. The optimized assays were shown to work well and were used to study the marker concentrations in the clinical sample panels. The marker levels were measured from preoperative blood samples of prostate cancer patients scheduled for radical prostatectomy. The association of the markers with the cancer stage and grade was studied. It was found that among all tested markers and their combinations especially the ratio of fPSA-N to tPSA and ratio of free PSA (fPSA) to tPSA were associated with both cancer stage and grade. They might be useful in predicting the cancer aggressiveness, but further follow-up studies are necessary to fully evaluate the significance of the markers in this clinical setting. The markers tPSA, fPSA, fPSA-I and hK2 were combined in a statistical model which was previously shown to be able to reduce unnecessary biopsies when applied to large screening cohorts of men with elevated tPSA. The discriminative accuracy of this model was compared to models based on established clinical predictors in reference to biopsy outcome. The kallikrein model and the calculated fPSA-N concentrations (fPSA minus fPSA-I) correlated with the prostate volume and the model, when compared to the clinical models, predicted prostate cancer in biopsy equally well. Hence, the measurement of kallikreins in a blood sample could be used to replace the volume measurement which is time-consuming, needs instrumentation and skilled personnel and is an uncomfortable procedure. Overall, the model could simplify the estimation of prostate cancer risk. Finally, as the fPSA-N seems to be an interesting new marker, a direct immunoassay for measuring fPSA-N concentrations was developed. The analytical performance was acceptable, but the rather complicated assay protocol needs to be improved until it can be used for measuring large sample panels.