916 resultados para production of L-asparaginase
Resumo:
The effects of temperature and food was examined for Calanus finmarchicus and C. glacialis during 3 phases of the phytoplankton spring bloom in Disko Bay, western Greenland. The 2 species were collected during pre-bloom, bloom, and post-bloom and exposed to temperatures from 0 to 10°C, combined with deficient or excess food. Fecal pellet and egg production were measured as indices for grazing and secondary production, respectively. Furthermore, changes in body carbon, nitrogen, and lipid content were measured. C. glacialis sampled before the bloom and incubated with excess food exhibited high specific egg production at temperatures between 0 and 2.5°C. Higher temperatures did not increase egg production considerably, whereas egg production for C. finmarchicus more than tripled between 2.5 and 5°C. Starved C. glacialis produced eggs at all temperatures stimulated by increasing temperatures, whereas starved C. finmarchicus needed temperatures above 5°C to produce eggs fueled by their lipid stores. Few C. finmarchicus had mature gonads at the initiation of the pre-bloom and bloom experiment, and egg production of C. finmarchicus therefore only increased as the ratio of individuals with mature gonads increased. During the bloom, both C. glacialis and C. finmarchicus used the high food availability for egg production, while refueling or exhausting their lipid stores, respectively. Finally, during the post-bloom experiment, production was low by C. finmarchicus, whereas C. glacialis had terminated production. Our results suggest that a future warmer ocean will reduce the advantage of early spawning by C. glacialis and that C. finmarchicus will become increasingly prevalent.
Resumo:
During the EBENE cruise (November 1996), distributions of biogenic silica concentration and production rates were investigated in the surface waters of the equatorial Pacific (180°W, from 8°S to 8°N), with particular emphasis on the limitation of the biogenic silica production by ambient silicic acid concentrations. Integrated over the depth of the euphotic layer, concentrations of biogenic silica and production rates were maximum at the Equator (8.0 and 2.6 mmol/m**2/d) and decreased more or less symmetrically polewards. Contribution of diatoms to the new production was estimated indirectly, comparing biogenic silica production rates and available data of new and export production in the same area. This comparison shows that new production in the equatorial area could mostly be sustained by diatoms, accounting for the major part of the exported flux of organic carbon. Kinetics experiments of silicic acid enrichment were performed. Half saturation constants were 1.57 µM at 3°S and 2.42 µM at the Equator close to the ambient concentrations. The corresponding Vmax values for Si uptake were 0.028/h at 3°S and 0.052/h at the equator. Experiments also show that in situ rates were restricted to 13-78% of Vmax, depending on ambient silicic acid concentrations. This work provides the first direct evidence that the rate of Si uptake by diatom populations of the equatorial Pacific is limited by the ambient concentration of silicic acid. However, such Si limitation might not be sufficient in itself to explain the low diatom growth rates observed, and additional limitation is suggested. One hypothesis that is consistent with the results of Fe limitation studies is that Fe and Si limitations may interact, rather than just being a mutually exclusive explanation for the HNLC character of the system.
Resumo:
The surf clams Mesodesma mactroides Reeve, 1854 and Donax hanleyanus Philippi, 1847 are the two dominating species in macrobenthic communities of sandy beaches off northern Argentina, with the latter now surpassing M. mactroides populations in abundance and biomass. Before stock decimation caused by exploitation (during the 1940s and 1950s) and mass mortality events (1995, 1999 and 2007) M. mactroides was the prominent primary consumer in the intertidal ecosystem and an important economic resource in Argentina. Since D. hanleyanus was not commercially fished and not affected by mass mortality events, it took over as the dominant species, but did never reach the former abundance of M. mactroides. Currently abundance and biomass of both surf clams are a multiple smaller than those of forty years ago, indicating the conservation status of D. hanleyanus and M. mactroides as endangered. Therefore the aim of this study is to analyse the population dynamics (population structure, growth and reproductive biology) of D. hanleyanus and M. mactroides, and to compare the results with historical data in order to detect possible differences within surf clam populations forty years ago and at present.
Resumo:
Although there are numerous examples of large-scale commercial microbial synthesis routes for organic bioproducts, few studies have addressed the obvious potential for microbial systems to produce inorganic functional biomaterials at scale. Here we address this by focusing on the production of nano-scale biomagnetite particles by the Fe(III)-reducing bacterium Geobacter sulfurreducens, which was scaled-up successfully from lab-scale to pilot plant-scale production, whilst maintaining the surface reactivity and magnetic properties which make this material well suited to commercial exploitation. At the largest scale tested, the bacterium was grown in a 50 L bioreactor, harvested and then inoculated into a buffer solution containing Fe(III)-oxyhydroxide and an electron donor and mediator, which promoted the formation of magnetite in under 24 hours. This procedure was capable of producing up to 120 g biomagnetite. The particle size distribution was maintained between 10 and 15 nm during scale-up of this second step from 10 ml to 10 L, with conserved magnetic properties and surface reactivity; the latter demonstrated by the reduction of Cr(VI). The process presented provides an environmentally benign route to magnetite production and serves as an alternative to harsher synthetic techniques, with the clear potential to be used to produce kg to tonne quantities.
Resumo:
The SES_UNLUATA_GR1-Mesozooplankton faecal pellet production rates dataset is based on samples taken during March and April 2008 in the Northern Libyan Sea, Southern Aegean Sea and in the North-Eastern Aegean Sea. Mesozooplankton is collected by vertical tows within the 0-100 m layer or within the Black sea water body mass layer in the case of the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets and are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).
Resumo:
The SES_GR2-Mesozooplankton faecal pellet production rates dataset is based on samples taken during August and September 2008 in the Northern Libyan Sea, Southern Aegean Sea and the North-Eastern Aegean Sea. Mesozooplankton is collected by vertical tows within the 0-100 m layer or within the Black sea water body mass layer in the case of the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).
Resumo:
The SES_GR1-Mesozooplankton faecal pellet production rates dataset is based on samples taken during April 2008 in the North-Eastern Aegean Sea. Mesozooplankton is collected by vertical tows within the Black sea water body mass layer in the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).