908 resultados para process dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. We study trajectories of planetesimals whose orbits decay due to gas drag in a primordial solar nebula and are perturbed by the gravity of the secondary body on an eccentric orbit whose mass ratio takes values from mu(2) = 10(-7) to mu(2) = 10(-3) increasing ten times at each step. Each planetesimal ultimately suffers one of the three possible fates: (1) trapping in a mean motion resonance with the secondary body; (2) collision with the secondary body and consequent increase of its mass; or (3) diffusion after crossing the orbit of the secondary body.Methods. We take the Burlirsh-Stoer numerical algorithm in order to integrate the Newtonian equations of the planar, elliptical restricted three-body problem with the secondary body and the planetesimal orbiting the primary. It is assumed that there is no interaction among planetesimals, and also that the gas does not affect the orbit of the secondary body.Results. The results show that the optimal value of the gas drag constant k for the 1: 1 resonance is between 0.9 and 1.25, representing a meter size planetesimal for each AU of orbital radius. In this study, the conditions of the gas drag are such that in theory, L4 no longer exists in the circular case for a critical value of k that defines a limit size of the planetesimal, but for a secondary body with an eccentricity larger than 0.05 when mu(2) = 10(-6), it reappears. The decrease of the cutoff collision radius increase the difusions but does not affect the distribution of trapping. The contribution to the mass accretion of the secondary body is over 40% with a collision radius 0.05R(Hill) and less than 15% with 0.005R(Hill) for mu(2) = 10(-7). The trappings no longer occur when the drag constant k reachs 30. That means that the size limit of planetesimal trapping is 0.2 m per AU of orbital radius. In most cases, this accretion occurs for a weak gas drag and small secondary eccentricity. The diffusions represent most of the simulations showing that gas drag is an efficient process in scattering planetesimals and that the trapping of planetesimals in the 1: 1 resonance is a less probable fate. These results depend on the specific drag force chosen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A probable capture of Phobos into an interesting resonance was presented in our previous work. With a simple model, considering Mars in a Keplerian and circular orbit, it was shown that once captured in the resonance, the inclination of the satellite reaches very high values. Here, the integrations are extended to much longer times and escape situations are analyzed. These escapes are due to the interaction of new additional resonances, which appear as the inclination starts to increase reaching some specific values. Compared to classical capture in mean motion resonances, we see some interesting differences in this problem. We also include the effect of Mars' eccentricity in the process of the capture. The role played by this eccentricity becomes important, particularly when Phobos encounters a double resonance at a approximate to 2.619R(M). Planetary perturbations acting on Mars and variation of its equator are also included. In general, some possible scenarios of the future of Phobos are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A significant part of film production by the coating industry is based on wet bench processes, where better understanding of their temporal dynamics could facilitate control and optimization. In this work, in situ laser interferometry is applied to study properties of flowing liquids and quantitatively monitor the dip coating batch process. Two oil standards Newtonian, non-volatile, with constant refractive indices and distinct flow properties - were measured under several withdrawing speeds. The dynamics of film physical thickness then depends on time as t(-1/2), and flow characterization becomes possible with high precision (linear slope uncertainty of +/-0.04%). Resulting kinematic viscosities for OP60 and OP400 are 1,17 +/- 0,03. St and 9,9 +/- 0,2 St, respectively. These results agree with nominal values, as provided by the manufacturer. For more complex films (a multi-component sol-gel Zirconyl Chloride aqueous solution) with a varying refractive index, through a direct polarimetric measurement, allowing also determination of the temporal evolution of physical thickness (uncertainty of +/- 0,007 microns) is also determined during dip coating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple mathematical model is developed to explain the appearance of oscillations in the dispersal of larvae from the food source in experimental populations of certain species of blowflies. The life history of the immature stage in these flies, and in a number of other insects, is a system with two populations, one of larvae dispersing on the soil and the other of larvae that burrow in the soil to pupate. The observed oscillations in the horizontal distribution of buried pupae at the end of the dispersal process are hypothesized to be a consequence of larval crowding at a given point in the pupation substrate. It is assumed that dispersing larvae are capable of perceiving variations in density of larvae buried at a given point in the substrate of pupation, and that pupal density may influence pupation of dispersing larvae. The assumed interaction between dispersing larvae and the larvae that are burrowing to pupate is modeled using the concept of non-local effects. Numerical solutions of integro-partial differential equations developed to model density-dependent immature dispersal demonstrate that variation in the parameter that governs the non-local interaction between dispersing and buried larvae induces oscillations in the final horizontal distribution of pupae. (C) 1997 Academic Press Limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vitrification and devitrification features of lead fluoride are investigated by means of molecular dynamic simulations. The influence of heating rate on the devitrification temperature as well as the dependence of the glass properties on its thermal history, i.e., the cooling rate employed, is identified. As expected, different glasses are obtained when the cooling rates differ. Diffusion coefficient analysis during heating of glass and crystal, indicates that the presence of defects on the glassy matrix favors the transition processes from the ionic to a superionic state, with high mobility of fluorine atoms, responsible for the high anionic conduction of lead fluoride. Nonisothermal and isothermal devitrification processes are simulated in glasses obtained at different cooling rates and structural organizations occurring during the heat treatments are clearly observed. When a fast cooling rate is employed during the glass formation, the devitrification of a single crystal (limited by the cell dimensions) is observed, while the glass obtained with slower cooling rate, allowing relaxations and organization of various regions on the glass bulk during the cooling process, devitrifies in more than one crystalline plane. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism involved in the Tm3+ (F-3(4))-->Ho3+ (I-5(7)) energy transfer and Tm3+ (H-3(4), H-3(6))-->Tm3+ (F-3(4), F-3(4)) cross relaxation as a function of the donor and acceptor concentrations was investigated in Tm-Ho-codoped fluorozirconate glasses. The experimental transfer rates were determined for the Tm-->Ho energy transfer from the best fit of the acceptor luminescence decay using an expression which takes into account the Inokuti-Hirayama model and localized donor-to-acceptor interaction solution. The original acceptor solution derived from the Inokuti-Hirayama model fits well the acceptor luminescence transient only for low-concentrated systems. The results showed that a fast excitation diffusion that occurs in a very short time (t<process is assisted by excitation migration among donors state, reinforces the existence of a fast excitation diffusion among donor ions before the energy transfer to acceptor already observed in Yb:Er:ZBLAN. The fast excitation diffusion effect was observed to dominate both the Tm-->Tm cross relaxation and Tm-->Ho energy transfer ions from H-3(4) and F-3(4) thulium states, respectively. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The von Neumann-Liouville time evolution equation is represented in a discrete quantum phase space. The mapped Liouville operator and the corresponding Wigner function are explicitly written for the problem of a magnetic moment interacting with a magnetic field and the precessing solution is found. The propagator is also discussed and a time interval operator, associated to a unitary operator which shifts the energy levels in the Zeeman spectrum, is introduced. This operator is associated to the particular dynamical process and is not the continuous parameter describing the time evolution. The pair of unitary operators which shifts the time and energy is shown to obey the Weyl-Schwinger algebra. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rheological behavior of coffee extract with different water contents (49 to 90%) was studied at a wide range of temperatures (274 to 365 K) using a concentric cylinder rheometer. The flow curves followed different models depending on the concentration and temperature level. Newtonian behavior was observed at high values of water content and temperature, changing to power law as these values were decreased. The Newtonian viscosity as well as the consistency and behavior index could be well correlated by functions simultaneously dependent on temperature and water content. The rheological parameters, together with experimental values of pressure loss in tube flow, were used to calculate friction factors. These showed to be in good agreement with those resulting from classical theoretical and empirical equations, thus confirming the reliability of the rheological measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anelastic spectrum (dynamic Young's modulus and elastic energy absorption) of La2CuO4+δ has been measured between 1 and 700 K with 0<δ<0.02. The spectrum of stoichiometric La2CuO4 in the low-temperature orthorhombic (LTO) phase is dominated by two intense relaxation processes which cause softenings of 16% around 150 K and 9% below 30 K at f∼1 kHz. The relaxation at 150 K is attributed to the presence of a fraction of the CuO6 octahedra which are able to change their tilted configuration by thermal activation between orientations which are nearly energetically equivalent, possibly within the twin boundaries. The relaxation below 30 K is governed by tunneling, and involves a considerable fraction of the lattice atoms. It is proposed that the double-well potentials for the low-temperature relaxation are created by the tendency of the LTO phase to form low-temperature tetragonal (LTT) domains, which however are not stabilized like when La is partially substituted with Ba. On doping with excess O, the relaxation rates of these processes are initially enhanced by hole doping, while their intensities are depressed by lattice disorder; an explanation of this behavior is provided. Excess O also causes two additional relaxation processes. The one appearing at lower values of δ is attributed to the hopping of single interstitial O2- ions, with a hopping rate equal to τ-1=2×10-14exp(-5600/T) s. The second process is slower and can be due to O pairs or other complexes containing excess O.