957 resultados para prefrontal cortex (PFC)
Resumo:
Objective: Converging evidence speak in favor of an abnormal susceptibility to oxidative stress in schizophrenia. A decreased level of glutathione (GSH), the principal non-protein antioxidant and redox regulator, was observed both in cerebrospinal-fluid and prefrontal cortex of schizophrenia patients (Do et al., 2000). Results: Schizophrenia patients have an abnormal GSH synthesis most likely of genetic origin: Two independent case-control studies showed a significant association between schizophrenia and a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease-associated genotypes correlated with a decrease in GCLC protein expression, GCL activity and GSH content. Such a redox dysregulation during development could underlie the structural and functional anomalies in connectivity: In experimental models, GSH deficit induced anomalies similar to those observed in patients. (a) morphology: In animal models with GSH deficit during the development we observed in prefrontal cortex a decreased dendritic spines density in pyramidal cells and an abnormal development of parvalbumine (but not of calretinine) immunoreactive GABA interneurones in anterior cingulate cortex. (b) physiology: GSH depletion in hippocampal slices induces NMDA receptors hypofunction and an impairment of long term potentiation. In addition, GSH deficit affected the modulation of dopamine on NMDA-induced Ca 2+ response in cultured cortical neurons. While dopamine enhanced NMDA responses in control neurons, it depressed NMDA responses in GSH-depleted neurons. Antagonist of D2-, but not D1-receptors, prevented this depression, a mechanism contributing to the efficacy of antipsychotics. The redox sensitive ryanodine receptors and L-type calcium channels underlie these observations. (c) cognition: Developing rats with low [GSH] and high dopamine lead deficit in olfactory integration and in object recognition which appears earlier in males that females, in analogy to the delay of the psychosis onset between man and woman. Conclusion: These clinical and experimental evidence, combined with the favorable outcome of a clinical trial with N-Acetyl Cysteine, a GSH precursor, on both the negative symptoms (Berk et al., submitted) and the mismatch negativity in an auditory oddball paradigm supported the proposal that a GSH synthesis impairment of genetic origin represent, among other factors, one major risk factor in schizophrenia.
Resumo:
Deduction allows us to draw consequences from previous knowledge. Deductive reasoning can be applied to several types of problem, for example, conditional, syllogistic, and relational. It has been assumed that the same cognitive operations underlie solutions to them all; however, this hypothesis remains to be tested empirically. We used event-related fMRI, in the same group of subjects, to compare reasoning-related activity associated with conditional and syllogistic deductive problems. Furthermore, we assessed reasoning-related activity for the two main stages of deduction, namely encoding of premises and their integration. Encoding syllogistic premises for reasoning was associated with activation of BA 44/45 more than encoding them for literal recall. During integration, left fronto-lateral cortex (BA 44/45, 6) and basal ganglia activated with both conditional and syllogistic reasoning. Besides that, integration of syllogistic problems additionally was associated with activation of left parietal (BA 7) and left ventro-lateral frontal cortex (BA 47). This difference suggests a dissociation between conditional and syllogistic reasoning at the integration stage. Our finding indicates that the integration of conditional and syllogistic reasoning is carried out by means of different, but partly overlapping, sets of anatomical regions and by inference, cognitive processes. The involvement of BA 44/45 during both encoding (syllogisms) and premise integration (syllogisms and conditionals) suggests a central role in deductive reasoning for syntactic manipulations and formal/linguistic representations.
Resumo:
Projecte de recerca elaborat a partir d’una estada al Max Planck Institute for Human Cognitive and Brain Sciences, Alemanya, entre 2010 i 2012. El principal objectiu d’aquest projecte era estudiar en detall les estructures subcorticals, en concret, el rol dels ganglis basals en control cognitiu durant processament lingüístic i no-lingüístic. Per tal d’assolir una diferenciació minuciosa en els diferents nuclis dels ganglis basals s’utilitzà ressonància magnètica d’ultra-alt camp i alta resolució (7T-MRI). El còrtex prefrontal lateral i els ganglis basals treballant conjuntament per a mitjançar memòria de treball i la regulació “top-down” de la cognició. Aquest circuit regula l’equilibri entre respostes automàtiques i d’alt-ordre cognitiu. Es crearen tres condicions experimentals principals: frases/seqüències noambigües, no-gramatical i ambigües. Les frases/seqüències no-ambigües haurien de provocar una resposta automàtica, mentre les frases/seqüències ambigües i no-gramaticals produïren un conflicte amb la resposta automàtica, i per tant, requeririen una resposta de d’alt-ordre cognitiu. Dins del domini de la resposta de control, la ambigüitat i no-gramaticalitat representen dues dimensions diferents de la resolució de conflicte, mentre per una frase/seqüència temporalment ambigua existeix una interpretació correcte, aquest no és el cas per a les frases/seqüències no-gramaticals. A més, el disseny experimental incloïa una manipulació lingüística i nolingüística, la qual posà a prova la hipòtesi que els efectes són de domini-general; així com una manipulació semàntica i sintàctica que avaluà les diferències entre el processament d’ambigüitat/error “intrínseca” vs. “estructural”. Els resultats del primer experiment (sintax-lingüístic) mostraren un gradient rostroventralcaudodorsal de control cognitiu dins del nucli caudat, això és, les regions més rostrals sostenint els nivells més alts de processament cognitiu
Resumo:
Serotonergic and endocannabinoid systems are important substrates for the control of emotional behavior and growing evidence show an involvement in the pathophysiology of mood disorders. In the present study, the absence of the activity of the CB1 cannabinoid receptor impaired serotonergic negative feedback in mice. Thus, in vivo microdialysis experiments revealed increased basal 5-HT extracellular levels and attenuated fluoxetine-induced increase of 5-HT extracellular levels in the prefrontal cortex of CB1 knockout compared to wild-type mice. These observations could be related to the significant reduction in the 5-HT transporter binding site density detected in frontal cortex and hippocampus of CB1 knockout mice. The lack of CB1 receptor also altered some 5-HT receptors related to the 5-HT feedback. Extracellular recordings in the dorsal raphe nucleus revealed that the genetic and pharmacological blockade of CB1 receptor induced a 5-HT1A autoreceptor functional desensitization. In situ hybridization studies showed a reduction in the expression of the 5-HT2C receptor within several brain areas related to the control of the emotional responses, such as the dorsal raphe nucleus, the nucleus accumbens and the paraventricular nucleus of the hypothalamus, whereas an overexpression was observed in the CA3 area of the ventral hippocampus. These results reveal that the lack of CB1 receptor induces a facilitation of the activity of serotonergic neurons in the dorsal raphe nucleus by altering different components of the 5-HT feedback as well as an increase in 5-HT extracellular levels in the prefrontal cortex in mice.
Resumo:
3, 4-Methylenedioxymethamphetamine (MDMA) and cannabis are widely abused illicit drugs that are frequently consumed in combination. Interactions between these two drugs have been reported in several pharmacological responses observed in animals, such as body temperature, anxiety, cognition and reward. However, the interaction between MDMA and cannabis in addictive processes such as physical dependence has not been elucidated yet. In this study, the effects of acute and chronic MDMA were evaluated on the behavioral manifestations of Δ9-tetrahydrocannabinol (THC) abstinence in mice. THC withdrawal syndrome was precipitated by injecting the cannabinoid antagonist rimonabant (10 mg/kg, i.p.) in mice chronically treated with THC, and receiving MDMA (2.5, 5 and 10 mg/kg i.p.) or saline just before the withdrawal induction or chronically after the THC administration. Both, chronic and acute MDMA decreased in a dose-dependent manner the severity of THC withdrawal. In vivo microdialysis experiments showed that acute MDMA (5 mg/kg, i.p.) administration increased extracellular serotonin levels in the prefrontal cortex, but not dopamine levels in the nucleus accumbens. Our results also indicate that the attenuation of THC abstinence symptoms was not due to a direct interaction between rimonabant and MDMA nor to the result of the locomotor stimulating effects of MDMA. The modulation of the cannabinoid withdrawal syndrome by acute or chronic MDMA suggests a possible mechanism to explain the associated consumption of these two drugs in humans.
Resumo:
Glutathione (GSH), a major redox regulator and anti-oxidant, is decreased in cerebrospinal fluid and prefrontal cortex of schizophrenia patients. The gene of the key GSH-synthesizing enzyme, glutamate-cysteine ligase, modifier (GCLM) subunit, is associated with schizophrenia, suggesting that the deficit in the GSH system is of genetic origin. Using the GCLM knock-out (KO) mouse model with 60% decreased brain GSH levels, we have shown that redox dysregulation results in abnormal brain morphology and function. Current theory holds that schizophrenia is a developmental disease involving progressive anatomical and functional brain pathology. Here, we used GCLM KO mice to investigate the impact of a genetically dysregulated redox system on the neurochemical profile of the developing brain. The anterior and posterior cortical neurochemical profile of male and female GCLM KO, heterozygous and wildtype mice was determined by localised in vivo 1H NMR spectroscopy at 14.1 T (Varian/Magnex spectrometer) on post-natal days 10, 20, 30, 60 and 90. We show, for the first time, (1) that high quality 1H NMR spectra can be acquired from early developing mouse brains and (2) that recurrent anaesthesia by itself when administered at the same developmental days has no adverse effects on brain metabolites nor on adult behaviour. (3) Most importantly, our results reveal genotype and age specific changes for a number of metabolites revealing insight into normal brain development and about the impact of genetic GSH dysregulation.
Resumo:
OBJECTIVE: To reveal the EEG correlates of resting hypofrontality in schizophrenia (SZ). METHOD: We analyzed the whole-head EEG topography in 14 patients compared to 14 matched controls by applying a new parameterization of the multichannel EEG. We used a combination of power measures tuned for regional surface mapping with power measures that allow evaluation of global effects. RESULTS: The SZ-related EEG abnormalities include i) a global decrease in absolute EEG power robustly manifested in the alpha and beta frequency bands, and ii) a relative increase in the alpha power over the prefrontal brain regions against its reduction over the posterior regions. In the alpha band both effects are linked to the SZ symptoms measured with Positive and Negative Symptom Scales and to chronicity. CONCLUSION: As alpha activity is related to regional deactivation, our findings support the concept of hypofrontality in SZ and expose the alpha rhythm as a sensitive indicator of it.
Resumo:
Abstract Fundamental research in psychiatric neurosciences assumes that psychiatric disorders are associated with neurobiological factors. Identification of these factors would provide therapeutic targets as well as a better understanding of the relationship between- brain and behaviour in pathological processes. We conducted experiments in an animal model of schizophrenia. Several behavioural tasks were used to evaluate spatial and working memory in these animals. The model is based on glutathione deficit during cerebral development. Indeed, a 50% decrease of glutathione has been reported in prefrontal cortex of patients with schizophrenia. Glutathione is a major antioxidant in the brain and its deficit could lead to abnormal brain connectivity. The glutathione deficit was induced in rats by perinatal (PS-P16) subcutaneous injections with Lbuthionine-(S,R)-sullfoximine (BSO), an inhibitor of glutathione synthesis. This treatment leads to a transitory 50% glutathione levels during brain development. In parallel, we conducted behavioural testing in rats with a medial prefrontal cortex lesion. This allowed us to compare early damage induced by BSO treatment with a focal lesion in adults of a brain area known to present anomalies in schizophrenia. Finally, we conducted a series of experiments in senescent rats to evaluate if cognitive deficits could be related to neurobiological changes. Our results show that an early glutathione deficit provokes cognitive deficits in adulthood. These spatial and working memory deficits resemble the cognitive deficits observed in schizophrenia. The comparison with prefrontal rats revealed that the early brain glutathione deficit provoked more severe cognitive deficits than the prefrontal lesion in adult rats. Moreover, in both cases, we observed a dissociation in memory deficits depending on the type of locomotion that was used in behavioural experiments. Indeed, BSO treated rats as well as prefrontal rats showed place learning or working memory deficits in tasks conducted on dry surfaces where they had to walk. In contrast, they showed no deficit when the same cognitive functions were tested in the water maze. This dissociation might be sustained by a difference in requirement of sensory integration between walking and swimming tasks. Résumé La recherche fondamentale en neurosciences psychiatriques repose sur le présupposé selon lequel les symptômes manifestés dans les troubles psychiatriques auraient des concomitants neurobiologiques. Ceux-ci, une fois identifiés, offriraient des cibles pour une démarche thérapeutique ainsi que des modèles permettant de mieux comprendre les soubassements biologiques du comportement et des activités mentales. Nos expériences s'articulent autour de la question de la modélisation de la schizophrénie chez l'animal. Nous avons recherché chez ces animaux des troubles cognitifs et sensoriels associés à la schizophrénie. En effet, chez l'homme comme chez l'animal, la mémoire spatiale et la mémoire de travail dépendent fortement de la capacité d'intégration et d'organisation des informations sensorielles. Les premières expériences ont été menées suite à une perturbation périnatale du développement cérébral. Celle-ci visait à reproduire une diminution du taux de glutathion dans le cerveau, des recherches précédentes ayant observé une diminution de 50% du taux de glutathion dans le cortex préfrontal de patients schizophrènes. Le glutathion étant un antioxydant majeur dans le cerveau, son déficit pourrait conduire à des perturbations de la circuiterie cérébrale. Nous avons reproduit ce déficit chez le rat, par injection de Lbuthionine-(S,R)-sullfoximine (BSO), un inhibiteur de la synthèse du glutathion... Ce traitement a été administré pendant la période périnatale (du jour postnatal 5 au jour 16) provoquant une diminution de 50% du taux de glutathion. Nous avons ensuite évalué lës répercussions de cette atteinte précoce sur le comportement des rats à l'âge adulte. Ce modèle s'inscrit donc dans l'hypothèse neurodéveloppementale qui associe la schizophrénie à une atteinte du développement cérébral normal. Nous avons ensuite conduit des expériences similaires chez des rats ayant subi une lésion du cortex préfrontal pour comparer les répercussions du traitement périnatal avec une lésion, à l'âge adulte, d'une aire cérébrale connue pour présenter des anomalies chez les patients. Finalement, nous avons évalué si les processus sensoriels et cognitifs précédemment étudiés pouvaient également être affectés lors du vieillissement normal en recherchant des corrélats biologiques des déficits de mémoire liés à l'âge avancé. Nos résultats montrent que ce déficit précoce en glutathion peut avoir des répercussions surale comportement à l'âge adulte. On a relevé une similarité avec les déficits cognitifs associés.à la schizophrénie, incluant des déficits de mémoire de travail ainsi que des déficits de mémoire spatiale. Ces déficits étaient fortement liés au type de locomotion utilisée et n'ont été observés que dans les tâches où les animaux devaient rejoindre un but en marchant mais pas dans lés tests dans lesquels ils devaient localiser une cible en nageant. Les déficits induits par la lésion préfrontale chez l'adulte étaient beaucoup plus légers que ceux découlant de l'atteinte périnatale mais présentaient une dissociation analogue en fonction du type de locomotion. De plus, des tests similaires menés au cours du vieillissement confirment que la mémoire de travail peut être affectée sélectivement par le vieillissement dans une tâche où les animaux doivent marcher, tout en restant intacte dans le bassin de Morris. Les déficits cognitifs liés au vieillissement étaient significativement corrélés à des différences de niveaux des protéines post-synaptiques PSD95 (postsynaptic density 95). L'ensemble des résultats montre que les tests qui sont fréquemment utilisés pour évaluer la mémoire chez l'animal pourraient faire appel à des processus différents. Cette différence pourrait notamment tenir au niveau d'intégration sensorielle requis pour résoudre la tâche, qui est particulièrement sollicitée au cours d'une locomotion intermittente.
Resumo:
BACKGROUND: The amygdala, hippocampus, medial prefrontal cortex (mPFC) and brain-stem subregions are implicated in fear conditioning and extinction, and are brain regions known to be sexually dimorphic. We used functional magnetic resonance imaging (fMRI) to investigate sex differences in brain activity in these regions during fear conditioning and extinction. METHODS: Subjects were 12 healthy men comparable to 12 healthy women who underwent a 2-day experiment in a 3 T MR scanner. Fear conditioning and extinction learning occurred on day 1 and extinction recall occurred on day 2. The conditioned stimuli were visual cues and the unconditioned stimulus was a mild electric shock. Skin conductance responses (SCR) were recorded throughout the experiment as an index of the conditioned response. fMRI data (blood-oxygen-level-dependent [BOLD] signal changes) were analyzed using SPM8. RESULTS: Findings showed no significant sex differences in SCR during any experimental phases. However, during fear conditioning, there were significantly greater BOLD-signal changes in the right amygdala, right rostral anterior cingulate (rACC) and dorsal anterior cingulate cortex (dACC) in women compared with men. In contrast, men showed significantly greater signal changes in bilateral rACC during extinction recall. CONCLUSIONS: These results indicate sex differences in brain activation within the fear circuitry of healthy subjects despite similar peripheral autonomic responses. Furthermore, we found that regions where sex differences were previously reported in response to stress, also exhibited sex differences during fear conditioning and extinction.
Resumo:
CONTEXT: Recent magnetic resonance imaging studies have attempted to relate volumetric brain measurements in early schizophrenia to clinical and functional outcome some years later. These studies have generally been negative, perhaps because gray and white matter volumes inaccurately assess the underlying dysfunction that might be predictive of outcome. OBJECTIVE: To investigate the predictive value of frontal and temporal spectroscopy measures for outcome in patients with first-episode psychoses. DESIGN: Left prefrontal cortex and left mediotemporal lobe voxels were assessed using proton magnetic resonance spectroscopy to provide the ratio of N-acetylaspartate (NAA) and choline-containing compounds to creatine and phosphocreatine (Cr) (NAA/Cr ratio). These data were used to predict outcome at 18 months after admission, as assessed by a systematic medical record audit. SETTING: Early psychosis clinic. PARTICIPANTS: Forty-six patients with first-episode psychosis. MAIN OUTCOME MEASURES: We used regression models that included age at imaging and duration of untreated psychosis to predict outcome scores on the Global Assessment of Functioning Scale, Clinical Global Impression scales, and Social and Occupational Functional Assessment Scale, as well as the number of admissions during the treatment period. We then further considered the contributions of premorbid function and baseline level of negative symptoms. RESULTS: The only spectroscopic predictor of outcome was the NAA/Cr ratio in the prefrontal cortex. Low scores on this variable were related to poorer outcome on all measures. In addition, the frontal NAA/Cr ratio explained 17% to 30% of the variance in outcome. CONCLUSIONS: Prefrontal neuronal dysfunction is an inconsistent feature of early psychosis; rather, it is an early marker of poor prognosis across the first years of illness. The extent to which this can be used to guide treatment and whether it predicts outcome some years after first presentation are questions for further research.
Resumo:
The neurobiological basis of psychogenic movement disorders remains poorly understood and the management of these conditions difficult. Functional neuroimaging studies have provided some insight into the pathophysiology of disorders implicating particularly the prefrontal cortex, but there are no studies on psychogenic dystonia, and comparisons with findings in organic counterparts are rare. To understand the pathophysiology of these disorders better, we compared the similarities and differences in functional neuroimaging of patients with psychogenic dystonia and genetically determined dystonia, and tested hypotheses on the role of the prefrontal cortex in functional neurological disorders. Patients with psychogenic (n = 6) or organic (n = 5, DYT1 gene mutation positive) dystonia of the right leg, and matched healthy control subjects (n = 6) underwent positron emission tomography of regional cerebral blood flow. Participants were studied during rest, during fixed posturing of the right leg and during paced ankle movements. Continuous surface electromyography and footplate manometry monitored task performance. Averaging regional cerebral blood flow across all tasks, the organic dystonia group showed abnormal increases in the primary motor cortex and thalamus compared with controls, with decreases in the cerebellum. In contrast, the psychogenic dystonia group showed the opposite pattern, with abnormally increased blood flow in the cerebellum and basal ganglia, with decreases in the primary motor cortex. Comparing organic dystonia with psychogenic dystonia revealed significantly greater regional blood flow in the primary motor cortex, whereas psychogenic dystonia was associated with significantly greater blood flow in the cerebellum and basal ganglia (all P < 0.05, family-wise whole-brain corrected). Group × task interactions were also examined. During movement, compared with rest, there was abnormal activation in the right dorsolateral prefrontal cortex that was common to both organic and psychogenic dystonia groups (compared with control subjects, P < 0.05, family-wise small-volume correction). These data show a cortical-subcortical differentiation between organic and psychogenic dystonia in terms of regional blood flow, both at rest and during active motor tasks. The pathological prefrontal cortical activation was confirmed in, but was not specific to, psychogenic dystonia. This suggests that psychogenic and organic dystonia have different cortical and subcortical pathophysiology, while a derangement in mechanisms of motor attention may be a feature of both conditions.
Resumo:
Introduction: Tourette syndrome (TS) implicates the disinhibition of the cortico-striatal-thalamic-cortical circuitry (CSTC). Previous studies used a volumetric approach to investigate this circuitry with inconsistent findings. Cortical thickness may represent a more reliable measure than volume due to the low variability in the cytoarchitectural structure of the grey matter. Methods: 66 magnetic resonance imaging scans were acquired from 34 TS (age range 10-25, mean 17.19±4.1) and 32 normal controls (NC) (age range 10-20, mean 16.33±3.56). Brain morphology was assessed using the fully automated Civet pipeline at the Montreal Neurological Institute. Results: We report (1) significant cortical thinning in the fronto-parietal and somatosensory-motor cortices in TS relative to NC (p<0.05); (2) TS boys showed thinner cortex relative to TS girls in the fronto-parietal cortical regions (p<0.05); (3) significant decrease in the fronto-parietal mean cortical thickness in TS with age relative to NC and in the pre-central cortex in TS boys relative to TS girls; (4) significant negative correlations between tic severity and the somatosensory-motor cortical thickness. Conclusions: TS revealed important thinning in brain regions particularly involved in the somatosensory/motor bodily representations which may play an important role in tics. Our findings are in agreement with Leckman et al. (1991) hypothesis stating that facial tics would be associated with dysfunction in an orofacial subset of the motor circuit, eye blinking with the occulo-motor circuit, whereas lack of inhibition to a dysfunction in the prefrontal cortex. Gender and age differences may reflect differential etiological factors, which have significant clinical relevance in TS and should be considered in developing and using diagnostic and therapeutic interventions.
Resumo:
The aim of this study was to locate the breakpoints of cerebral and muscle oxygenation and muscle electrical activity during a ramp exercise in reference to the first and second ventilatory thresholds. Twenty-five cyclists completed a maximal ramp test on an electromagnetically braked cycle-ergometer with a rate of increment of 25 W/min. Expired gazes (breath-by-breath), prefrontal cortex and vastus lateralis (VL) oxygenation [Near-infrared spectroscopy (NIRS)] together with electromyographic (EMG) Root Mean Square (RMS) activity for the VL, rectus femoris (RF), and biceps femoris (BF) muscles were continuously assessed. There was a non-linear increase in both cerebral deoxyhemoglobin (at 56 ± 13% of the exercise) and oxyhemoglobin (56 ± 8% of exercise) concomitantly to the first ventilatory threshold (57 ± 6% of exercise, p > 0.86, Cohen's d < 0.1). Cerebral deoxyhemoglobin further increased (87 ± 10% of exercise) while oxyhemoglobin reached a plateau/decreased (86 ± 8% of exercise) after the second ventilatory threshold (81 ± 6% of exercise, p < 0.05, d > 0.8). We identified one threshold only for muscle parameters with a non-linear decrease in muscle oxyhemoglobin (78 ± 9% of exercise), attenuation in muscle deoxyhemoglobin (80 ± 8% of exercise), and increase in EMG activity of VL (89 ± 5% of exercise), RF (82 ± 14% of exercise), and BF (85 ± 9% of exercise). The thresholds in BF and VL EMG activity occurred after the second ventilatory threshold (p < 0.05, d > 0.6). Our results suggest that the metabolic and ventilatory events characterizing this latter cardiopulmonary threshold may affect both cerebral and muscle oxygenation levels, and in turn, muscle recruitment responses.
Resumo:
The antidepressant selective serotonin transporter inhibitors (SSRIs) are clinically active after a delay of several weeks. Indeed, the rapid increase of serotonin (5-HT) caused by SSRIs, stimulates the 5-HT1A autoreceptors, which exert a negative feedback on the 5-HT neurotransmission. Only when autoreceptors are desensitized, can SSRIs exert their therapeutic activity. The 5-HT1A receptor antagonist pindolol has been used to accelerate the clinical effects of antidepressant by preventing the negative feedback. Using the a-[11C]methyl-L-tryptophan/positron emission tomography (PET), the goal of the present double-blind, randomized study was to compare the changes in a-[11C]methyl-L-tryptophan trapping, an index of serotonin synthesis, in patients suffering from unipolar depression treated with the SSRI citalopram (20 mg/day) plus placebo versus patients treated with citalopram plus pindol (7.5 mg/day). PET and Hamilton depression rating scale (HDRS-17) were performed at baseline, and after 10 and 24 days of antidepressant treatment. Results show that the combination citalopram plus pindol, compared to citalopram alone shows a more rapid and greater increase of an index of 5-HT synthesis in prefrontal cortex (BA 9). This research is the first human PET study demonstrating that, after 24 days, the combination SSRIs plus pindolol produces a greater increase of the metabolism of serotonin in the prefrontal cortex, an area associated to depressive symptoms.
Resumo:
Recent findings in neuroscience suggest that adult brain structure changes in response to environmental alterations and skill learning. Whereas much is known about structural changes after intensive practice for several months, little is known about the effects of single practice sessions on macroscopic brain structure and about progressive (dynamic) morphological alterations relative to improved task proficiency during learning for several weeks. Using T1-weighted and diffusion tensor imaging in humans, we demonstrate significant gray matter volume increases in frontal and parietal brain areas following only two sessions of practice in a complex whole-body balancing task. Gray matter volume increase in the prefrontal cortex correlated positively with subject's performance improvements during a 6 week learning period. Furthermore, we found that microstructural changes of fractional anisotropy in corresponding white matter regions followed the same temporal dynamic in relation to task performance. The results make clear how marginal alterations in our ever changing environment affect adult brain structure and elucidate the interrelated reorganization in cortical areas and associated fiber connections in correlation with improvements in task performance.