870 resultados para power of sale
Resumo:
Background: The identification and characterization of genes that influence the risk of common, complex multifactorial disease primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. We have previously introduced a genetic programming optimized neural network (GPNN) as a method for optimizing the architecture of a neural network to improve the identification of gene combinations associated with disease risk. The goal of this study was to evaluate the power of GPNN for identifying high-order gene-gene interactions. We were also interested in applying GPNN to a real data analysis in Parkinson's disease. Results: We show that GPNN has high power to detect even relatively small genetic effects (2-3% heritability) in simulated data models involving two and three locus interactions. The limits of detection were reached under conditions with very small heritability (
Resumo:
Whilst some authors have portrayed the Internet as a powerful tool for business and political institutions, others have highlighted the potential of this technology for those vying to constrain or counter-balance the power of organizations, through e-collectivism and on-line action. What appears to be emerging is a contested space that has the potential to simultaneously enhance the power of organizations, whilst also acting as an enabling technology for the empowerment of grass-root networks. In this struggle, organizations are fighting for the retention of “old economy” positions, as well as the development of “new economy” power-bases. In realizing these positions, organizations and institutions are strategizing and manoeuvering in order to shape on-line networks and communications. For example, the on-line activities of individuals can be contained through various technological means, such as surveillance, and the structuring of the virtual world through the use of portals and “walled gardens”. However, loose groupings of individuals are also strategizing to ensure there is a liberation of their communication paths and practices, and to maintain the potential for mobilization within and across traditional boundaries. In this article, the unique nature and potential of the Internet are evaluated, and the struggle over this contested virtual space is explored.
Resumo:
Liberalisation has become an increasingly important policy trend, both in the private and public sectors of advanced industrial economies. This article eschews deterministic accounts of liberalisation by considering why government attempts to institute competition may be successful in some cases and not others. It considers the relative strength of explanations focusing on the institutional context, and on the volume and power of sectoral actors supporting liberalisation. These approaches are applied to two attempts to liberalise, one successful and one unsuccessful, within one sector in one nation – higher education in Britain. Each explanation is seen to have some explanatory power, but none is sufficient to explain why competition was generalised in the one case and not the other. The article counsels the need for scholars of liberalisation to be open to multiple explanations which may require the marshalling of multiple sources and types of evidence.
Resumo:
Geography, retailing, and power are institutionally bound up together. Within these, the authors situate their research in Clegg's work on power. Online shopping offers a growing challenge to the apparent hegemony of traditional physical retail stores' format. While novel e-formats appear regularly, blogshops in Singapore are enjoying astonishing success that has taken the large retailers by surprise. Even though there are well-developed theoretical frameworks for understanding the role of institutional entrepreneurs and other major stakeholders in bringing about change and innovation, much less attention has been paid to the role of unorganized, nonstrategic actors-such as blogshops-in catalyzing retail change. The authors explore how blogshops are perceived by consumers and how they challenge the power of other shopping formats. They use Principal Components Analysis to analyze results from a survey of 349 blogshops users. While the results show that blogshops stay true to traditional online shopping attributes, deviations occur on the concept of value. Furthermore, consumer power is counter intuitively found to be strongly present in the areas related to cultural ties, excitement, and search for individualist novelty (as opposed to mass-production), thereby encouraging researchers to think critically about emerging power behavior in media practices.
Resumo:
Higher education is a distribution center of knowledge and economic, social, and cultural power (Cervero & Wilson, 2001). A critical approach to understanding a higher education classroom begins with recognizing the instructor's position of power and authority (Tisdell, Hanley, & Taylor, 2000). The power instructors wield exists mostly unquestioned, allowing for teaching practices that reproduce the existing societal patterns of inequity in the classroom (Brookfield, 2000). ^ The purpose of this hermeneutic phenomenological study was to explore students' experiences with the power of their instructors in a higher education classroom. A hermeneutic phenomenological study intertwines the interpretations of both the participants and the researcher about a lived experience to uncover layers of meaning because the meanings of lived experiences are usually not readily apparent (van Manen, 1990). Fifteen participants were selected using criterion, convenience, and snowball sampling. The primary data gathering method were semi-structured interviews guided by an interview protocol (Creswell, 2003). Data were interpreted using thematic reflection (van Manen, 1990). ^ Three themes emerged from data interpretation: (a) structuring of instructor-student relationships, (b) connecting power to instructor personality, and (c) learning to navigate the terrains of higher education. How interpersonal relationships were structured in a higher education classroom shaped how students perceived power in that higher education classroom. Positive relationships were described using the metaphor of family and a perceived ethic of caring and nurturing by the instructor. As participants were consistently exposed to exercises of instructor power in a higher education classroom, they attributed those exercises of power to particular instructor traits rather than systemic exercises of power. As participants progressed from undergraduate to graduate studies, they perceived the benefits of expertise in content or knowledge development as secondary to expertise in successfully navigating the social, cultural, political, and interpersonal terrains of higher education. Ultimately, participants expressed that higher education is not about what you know; it is about learning how to play the game. Implications for teaching in higher education and considerations for future research conclude the study.^
Resumo:
The purpose of this hermeneutic phenomenological study was to explore students’ experiences with the power of their instructors in a higher education classroom. This study provides a deeper understanding of instructor power from student perspectives to inform teaching practices in the higher education classroom.
Resumo:
In Germany the upscaling algorithm is currently the standard approach for evaluating the PV power produced in a region. This method involves spatially interpolating the normalized power of a set of reference PV plants to estimate the power production by another set of unknown plants. As little information on the performances of this method could be found in the literature, the first goal of this thesis is to conduct an analysis of the uncertainty associated to this method. It was found that this method can lead to large errors when the set of reference plants has different characteristics or weather conditions than the set of unknown plants and when the set of reference plants is small. Based on these preliminary findings, an alternative method is proposed for calculating the aggregate power production of a set of PV plants. A probabilistic approach has been chosen by which a power production is calculated at each PV plant from corresponding weather data. The probabilistic approach consists of evaluating the power for each frequently occurring value of the parameters and estimating the most probable value by averaging these power values weighted by their frequency of occurrence. Most frequent parameter sets (e.g. module azimuth and tilt angle) and their frequency of occurrence have been assessed on the basis of a statistical analysis of parameters of approx. 35 000 PV plants. It has been found that the plant parameters are statistically dependent on the size and location of the PV plants. Accordingly, separate statistical values have been assessed for 14 classes of nominal capacity and 95 regions in Germany (two-digit zip-code areas). The performances of the upscaling and probabilistic approaches have been compared on the basis of 15 min power measurements from 715 PV plants provided by the German distribution system operator LEW Verteilnetz. It was found that the error of the probabilistic method is smaller than that of the upscaling method when the number of reference plants is sufficiently large (>100 reference plants in the case study considered in this chapter). When the number of reference plants is limited (<50 reference plants for the considered case study), it was found that the proposed approach provides a noticeable gain in accuracy with respect to the upscaling method.
Resumo:
Cognitive radio (CR) is fast emerging as a promising technology that can meet the machine-to machine (M2M) communication requirements for spectrum utilization and power control for large number of machines/devices expected to be connected to the Internet-of Things (IoT). Power control in CR as a secondary user can been modelled as a non-cooperative game cost function to quantify and reduce its effects of interference while occupying the same spectrum as primary user without adversely affecting the required quality of service (QoS) in the network. In this paper a power loss exponent that factors in diverse operating environments for IoT is employed in the non-cooperative game cost function to quantify the required power of transmission in the network. The approach would enable various CRs to transmit with lesser power thereby saving battery consumption or increasing the number of secondary users thereby optimizing the network resources efficiently.
Resumo:
The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I- 100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.
Resumo:
In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise cutoffs around the spatial frequency of the signal match the shape of the visual channel (symmetric or asymmetric) involved in the detection. In order to test the explanatory power of the model with empirical data, we performed six visual masking experiments. We show that this model, with only two free parameters, fits the empirical masking data with high precision. Finally, we provide equations of the power spectrum model for six masking noises used in the simulations and in the experiments.
Resumo:
This paper presents a system to control the power injected by a photovoltaic (PV) plant on the receiving network. This control is intended to mitigate some of the negative impacts that these units may produce on such networks, while increasing the installed power of the plant. The controlled parameters are the maximum allowed value of injected active power and the corresponding power factor, whose setpoints values may be fixed or dynamic. The developed system allows a local and a remote control. The injected power and the corresponding power factor may be set by following a predetermined profile or by real time adjustments to fulfill specific operation constraints on the receiving network. The system acts by adjusting the control parameters on the PV inverters. The main goal of the system is, in the end, to control the PV plant, ensuring the accomplishment of technical constraints and, at the same time, maximizing the installed power of the PV plant, which may be an important issue concerning the economic performance of such plants
Resumo:
Power efficiency is one of the most important constraints in the design of embedded systems since such systems are generally driven by batteries with limited energy budget or restricted power supply. In every embedded system, there are one or more processor cores to run the software and interact with the other hardware components of the system. The power consumption of the processor core(s) has an important impact on the total power dissipated in the system. Hence, the processor power optimization is crucial in satisfying the power consumption constraints, and developing low-power embedded systems. A key aspect of research in processor power optimization and management is “power estimation”. Having a fast and accurate method for processor power estimation at design time helps the designer to explore a large space of design possibilities, to make the optimal choices for developing a power efficient processor. Likewise, understanding the processor power dissipation behaviour of a specific software/application is the key for choosing appropriate algorithms in order to write power efficient software. Simulation-based methods for measuring the processor power achieve very high accuracy, but are available only late in the design process, and are often quite slow. Therefore, the need has arisen for faster, higher-level power prediction methods that allow the system designer to explore many alternatives for developing powerefficient hardware and software. The aim of this thesis is to present fast and high-level power models for the prediction of processor power consumption. Power predictability in this work is achieved in two ways: first, using a design method to develop power predictable circuits; second, analysing the power of the functions in the code which repeat during execution, then building the power model based on average number of repetitions. In the first case, a design method called Asynchronous Charge Sharing Logic (ACSL) is used to implement the Arithmetic Logic Unit (ALU) for the 8051 microcontroller. The ACSL circuits are power predictable due to the independency of their power consumption to the input data. Based on this property, a fast prediction method is presented to estimate the power of ALU by analysing the software program, and extracting the number of ALU-related instructions. This method achieves less than 1% error in power estimation and more than 100 times speedup in comparison to conventional simulation-based methods. In the second case, an average-case processor energy model is developed for the Insertion sort algorithm based on the number of comparisons that take place in the execution of the algorithm. The average number of comparisons is calculated using a high level methodology called MOdular Quantitative Analysis (MOQA). The parameters of the energy model are measured for the LEON3 processor core, but the model is general and can be used for any processor. The model has been validated through the power measurement experiments, and offers high accuracy and orders of magnitude speedup over the simulation-based method.
Resumo:
Negative-ion mode electrospray ionization, ESI(-), with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was coupled to a Partial Least Squares (PLS) regression and variable selection methods to estimate the total acid number (TAN) of Brazilian crude oil samples. Generally, ESI(-)-FT-ICR mass spectra present a power of resolution of ca. 500,000 and a mass accuracy less than 1 ppm, producing a data matrix containing over 5700 variables per sample. These variables correspond to heteroatom-containing species detected as deprotonated molecules, [M - H](-) ions, which are identified primarily as naphthenic acids, phenols and carbazole analog species. The TAN values for all samples ranged from 0.06 to 3.61 mg of KOH g(-1). To facilitate the spectral interpretation, three methods of variable selection were studied: variable importance in the projection (VIP), interval partial least squares (iPLS) and elimination of uninformative variables (UVE). The UVE method seems to be more appropriate for selecting important variables, reducing the dimension of the variables to 183 and producing a root mean square error of prediction of 0.32 mg of KOH g(-1). By reducing the size of the data, it was possible to relate the selected variables with their corresponding molecular formulas, thus identifying the main chemical species responsible for the TAN values.
Resumo:
Extracts from malagueta pepper (Capsicum frutescens L.) were obtained using supercritical fluid extraction (SFE) assisted by ultrasound, with carbon dioxide as solvent at 15MPa and 40°C. The SFE global yield increased up to 77% when ultrasound waves were applied, and the best condition of ultrasound-assisted extraction was ultrasound power of 360W applied during 60min. Four capsaicinoids were identified in the extracts and quantified by high performance liquid chromatography. The use of ultrasonic waves did not influence significantly the capsaicinoid profiles and the phenolic content of the extracts. However, ultrasound has enhanced the SFE rate. A model based on the broken and intact cell concept was adequate to represent the extraction kinetics and estimate the mass transfer coefficients, which were increased with ultrasound. Images obtained by field emission scanning electron microscopy showed that the action of ultrasonic waves did not cause cracks on the cell wall surface. On the other hand, ultrasound promoted disturbances in the vegetable matrix, leading to the release of extractable material on the solid surface. The effects of ultrasound were more significant on SFE from larger solid particles.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física