790 resultados para porous titanium
Resumo:
The cathodic behaviour of oxides formed on titanium electrodes in physiological solutions at potentials between 3 and 5 V (vs. SCE) was studied by cyclic voltammetry. In case of anodic polarization at potentials higher than 3 V (vs. SCE), a cathodic peak at similar to 0.4 V (vs. SCE) appears in the cathodic scan, which could be due to the reduction of unstable peroxides. The results show that this peak depends on the anodic potential and the oxidation time. This behaviour supposedly is due to the formation of unstable titanium peroxides like TiO3 during anodization. Based on repetitive oxidation-reduction processes can be concluded that the created amount of TiO3 inside of the TiO2 surface layer seems to be constant. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this work, the effect of the substrate microstructure on the formation of SnO2 membranes and of the sintering conditions on their porosity have been analysed. Samples have been prepared by colloidal suspensions cast on alumina or kaolin substrates. Supported membranes have been characterized by Hg porosimetry, MEV, XRD and N-2 adsorption-desorption isotherms. The results show that the narrower pore size distribution of alumina substrate allowed to prepare membranes more homogeneous and free of cracks than that supported on kaolin. The crystallite and pore sizes of the membranes could be controlled by adjusting the temperature of sintering, allowing materials with adequate microstructure with application for ultrafiltration process.
Resumo:
Traditional hydrotreating catalysts are constituted by molybdenum deposited on Al2O3 promoted by nickel and phosphorous. Several studies have shown that TiO2-Al2O3 mixed oxides are excellent supports for the active phases. Results concerning the preparation, characterization and testing of molybdenum catalyst supported on titania-alumina are presented. The support was prepared by sol-gel route using titanium and aluminum isopropoxides, the titanium one chelated with acetylacetone (acac) to promote similar hydrolysis ratio for both the alcoxides. The effect of nominal molar ratio [Ti]/[Ti+Al] on the microstructural features of nanometric particles was analyzed by X-Ray Diffraction, N-2 Adsorption Isotherms and Transmission Electron Microscopy. The catalytic activity of Mo impregnated supports was evaluated using the thiophene hydrodesulfurization at different temperatures and atmospheric pressure. The pores size distribution curve moves from the micropores to the mesopores by increasing the Ti contents, allowing the fine tuning of average size from 2.5 to 6 nm. Maximal (367 m(2).g(-1)) and minimal (127 m(2).g(-1)) surface area were found for support containing [Ti]/[Ti+Al] ratio equal to 0.1 and 1, respectively. The good mesopore texture of alumina-titania support with [Ti]/[Ti+Al] molar ratio between 0.3 and 0.5 was found particularly valuable for the preparation of well dispersed MoS2 active phase, leading to HDS catalyst with somewhat higher activity than that prepared using a commercial alumina support.
Resumo:
The synthesis, characterization and ethylene polymerization behavior of a set of Tp'MCl3 complexes (4, M = Ti, Tp' HB(3-neopentyl-pyrazolyl)(3)(-) (Tp(NP)); 5, M = Ti, Tp'= HB(3-tert-butyl-pyrazolyl)(3)(-) (Tp(tBu)); 6, M = Ti, Tp' = HB(3-phenyl-pyrazolyl)(3)(-) (Tp(Ph)); 7, M = Zr, Tp' = HB(3-phenyl-pyrazolyl)(3)(-) (Tp(ph)); 8, M = Zr, Tp' = HB(3-tert-butyl-pyrazolyl)(3)(-) (Tp(tBu))) is described. Treatment of these tris(pyrazolyl)borate Group IV compounds with methylalumoxane (MAO) generates active catalysts for ethylene polymerization. For the polymerization reactions performed in toluene at 60 degreesC and 3 atm of ethylene pressure, the activities varied between 1.3 and 5.1 X 10(3) g of PE/mol[M](.)h. The highest activity is reached using more sterically open catalyst precursor 4. The viscosity-average molecular weights ((M-v) over bar) of the PE's produced with these catalyst precursors varying from 3.57 to 20.23 x 10(5) gmol(-1) with melting temperatures in the range of 127-134 degreesC. Further polymerization studies employing 7 varying Al/Zr molar ratio and temperature of polymerization showed that the activity as well as the polymer properties are dependent on these parameters. In that case, higher activity was attained at 60 degreesC. The viscosity-average molecular weights of the polyethylene's decreases with increasing AI/Zr molar ratio. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: This study investigated the influence of estrogen deficiency and its treatment with estrogen and alendronate on the removal torque of osseointegrated titanium implants.Methods: Fifty-eight female Wistar rats received a titanium implant in the tibia metaphysis. After 60 days, which was needed for implant osseointegration, the animals were randomly divided into five groups: control (CTLE; N = 10), sham surgery (SHAM; N = 12), ovariectomy (OVX; N = 12), ovariectomy followed by hormone replacement (EST; N = 12), and ovariectomy followed by treatment with alendronate (ALE; N = 12). The CTLE group was sacrificed to confirm osseointegration, whereas the remaining groups were submitted to sham surgery or ovariectomy according to their designations. After 90 days, these animals were also sacrificed. Densitometry of femur and lumbar vertebrae was performed by dual-energy x-ray absorptiometry (DXA) to confirm systemic impairment of the animals. All implants were subjected to removal torque.Results: Densitometric analysis of the femur and lumbar vertebrae confirmed a systemic impairment of the animals, disclosing lower values of bone mineral density for OVX. Analysis of the removal torque of the implants showed statistically lower values (P <0.05) for the OVX group in relation to the other groups. However, the group treated with alendronate (ALE group) presented significantly higher torque values compared to the others.Conclusion: According to this study, estrogen deficiency was observed to have a negative influence on the removal torque of osseointegrated implants, whereas treatment with alendronate
Resumo:
Statement of problem. There are few studies on titanium casting shrinkage, and phosphate-bonded investments for titanium casting have not produced appropriate marginal fit.Purpose. The purpose of this study was to determine the thermal shrinkage of titanium and the setting and thermal expansion of 3 phosphate-bonded investments.Material and methods. The thermal shrinkage between the melting temperature and room temperature was calculated using a titanium thermal expansion coefficient. The thermal and setting expansion were measured for 3 phosphate bonded investments: Rematitan Plus (RP) specific for titanium, Rema Exakt (RE), and Castorit Super C (CA), using different special liquid concentrations (100%, 75%, and 50%). Setting expansion was measured for cylindrical specimens 50 mm long x 8 mm in diameter with a transducer. The heating and cooling curves were obtained with a dilatometer (DIL 402 PC). The total expansion curve was drawn using software, and temperatures to obtain expansion equivalent to titanium casting shrinkage were determined (n=5). In addition, the total expansion of the control group (RP at 430 degrees C) was measured, as well as the temperatures at which the other groups achieved equivalent total expansion (n=5). Data were analyzed by 1-way ANOVA and the Tukey HSD test (alpha=.05).Results. Titanium casting shrinkage was estimated as 1.55%. RP did not achieve this expansion. RE achieved expansion of 1.55% only with a special liquid concentration of 100% at 594 degrees C. CA with all special liquid concentrations attained this expansion (351 degrees C to 572 degrees C). Total expansion of the control group was 0.86%, and the other groups reached that expansion within the range of 70 degrees C to 360 degrees C.Conclusions. Only RE and CA demonstrated sufficient expansion to compensate for titanium casting shrinkage. All groups reached total expansion equivalent to that of the control group at significantly lower temperatures.
Resumo:
The laser ablation method was used for depositing porous nanocrystalline indium-tin oxide thin films for gas sensing applications. Samples were prepared at different pressures using three gases (O-2, 0.8N(2):0.2O(2), N-2) and heat-treated in the same atmosphere used for the ablation process. X-ray diffraction results show that the films are not oriented and the grain sizes are in the range between 15 and 40 nm. The grains are round shaped for all samples and the porosity of the films increases with the deposition pressure. The degree of sintering after heat treatment increases for lower oxygen concentrations, generating fractures on the surface of the samples. Film thicknesses are in the range of I pm for all gases as determined from scanning electron microscopy cross-sections. Electrical resistance varies between 36.3 ohm for the film made at 10 Pa pressure in N-2 until 9.35 x 10(7) ohm for the film made at 100 Pa in O-2. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Titanium(IV) oxide, coated on the surface of silica gel (surface area, 308 m2 g-1; amount of Ti(IV) per gram of modified silica gel, 1.8 x 10(-3) mol), was used to adsorb CrO4(2-) ions from acidic solutions. The exchange capacity increased at lower pH values and was affected to some extent by the acid used. The material was used to preconcentrate Cr(VI) from 0.5 ppm solutions of chromate very efficiently and virtually 100% recovery was achieved in every instance.