843 resultados para poor food intake
Resumo:
Identifying the factors that mediate covariation between an ornament and other phenotypic attributes is important to determine the signaling function of ornaments. Sign and magnitude of a covariation may vary across environments if the expression of the ornament or of its linked genes regulating correlated phenotypes is condition-dependent. I investigated in the barn owl Tyto alba whether sign and magnitude of covariation between body mass and two heritable melanin-based plumage ornaments change with food supply, along the reproductive cycle and from the morning to the evening. Using a dataset of 1,848 measurements of body mass in 336 breeding females, I found that females displaying large black spots were heavier than conspecifics with smaller spots in the afternoon (i.e., a long time after the last feeding) but not in the morning (i.e., a short time after the last feeding). This is consistent with the recently proposed hypothesis that eumelanin-based ornaments are associated with the ability to maintain energy balance between food intake and energy expenditure. Thus, covariation between melanin-based coloration and body mass can be detected only under specific conditions potentially explaining why it has been reported in only ten out of 28 vertebrate species. The proposition that ornamented individuals achieve a higher fitness than drab conspecifics only in specific environments should be tested for other ornaments.
Resumo:
Sleep and waking are controlled by opposing interactions between circadian and homeostatic processes. A circadian process generated by the suprachiasmatic nucleus determines when sleep should occur, while a homeostatic process keeps track of time spent awake and asleep and signals sleep need or sleep propensity. Recent evidence indicates that these two processes employ many of the same set of genes. Herein, we review the basic concepts of the circadian and homeostatic regulation of sleep, and then outline the molecular components of circadian clock. We then discuss the evidence demonstrating a role of clock genes in sleep homeostasis in flies, mice, and humans. We conclude by suggesting that clock genes might be crucial for integrating homeostatic need, not only that of sleep but also of food intake and energy metabolism.
Resumo:
The objective of this work was to evaluate the growth and the stress levels of juvenile dourado (Salminus brasiliensis) cultivated in cages. Fish stocked at densities of 15 (D15) and 30 (D30) fish per square meter were evaluated in a completely randomized design with three replicates. Fish were fed twice a day with extruded ration (42% crude protein). Density influenced only biomass and daily food intake, and glucose and lactate concentrations increased over time. D15 and D30 did not influence the growth of dourado. However, the increase of glucose and lactate levels over time indicates that cultivation in cages is a stressful condition for this species.
Resumo:
The relative importance of molecular biology in clinical practice is often underestimated. However, numerous procedures in clinical diagnosis and new therapeutic drugs have resulted from basic molecular research. Furthermore, understanding of the physiological and physiopathological mechanisms underlying several human diseases has been improved by the results of basic molecular research. For example, cloning of the gene encoding leptin has provided spectacular insights into the understanding of the mechanisms involved in the control of food intake and body weight maintenance in man. In cystic fibrosis, the cloning and identification of several mutations in the gene encoding the chloride channel transmembrane regulator (CFTR) have resolved several important issues in clinical practice: cystic fibrosis constitutes a molecular defect of a single gene. There is a strong correlation between the clinical manifestations or the severity of the disease (phenotype) with the type of mutations present in the CFTR gene (genotype). More recently, identification of mutations in the gene encoding a subunit of the renal sodium channel in the Liddle syndrome has provided important insight into the physiopathological understanding of mechanisms involved in this form of hereditary hypertension. Salt retention and secondary high blood pressure are the result of constitutive activation of the renal sodium channel by mutations in the gene encoding the renal sodium channel. It is speculated that less severe mutations in this channel could result in a less severe form of hypertension which may correspond to patients suffering from high blood pressure with low plasma renin activity. Several tools, most notably PCR, are derived from molecular research and are used in everyday practice, i.e. in prenatal diagnosis and in the diagnosis of several infectious diseases including tuberculosis and hepatitis. Finally, the production of recombinant proteins at lower cost and with fewer side effects is used in everyday clinical practice. Gene therapy remains an extraordinary challenge in correcting severe hereditary or acquired diseases. The use of genetically modified animal cell lines producing growth factors, insulin or erythropoetin, which are subsequently encapsulated and transferred to man, represents an attractive approach for gene therapy.
Resumo:
BACKGROUND/OBJECTIVES: Preoperative nutrition has been shown to reduce morbidity after major gastrointestinal (GI) surgery in selected patients at risk. In a randomized trial performed recently (NCT00512213), almost half of the patients, however, did not consume the recommended dose of nutritional intervention. The present study aimed to identify the risk factors for noncompliance. SUBJECTS/METHODS: Demographic (n=5) and nutritional (n=21) parameters for this retrospective analysis were obtained from a prospectively maintained database. The outcome of interest was compliance with the allocated intervention (ingestion of ⩾11/15 preoperative oral nutritional supplement units). Uni- and multivariate analyses of potential risk factors for noncompliance were performed. RESULTS: The final analysis included 141 patients with complete data sets for the purpose of the study. Fifty-nine patients (42%) were considered noncompliant. Univariate analysis identified low C-reactive protein levels (P=0.015), decreased recent food intake (P=0.032) and, as a trend, low hemoglobin (P=0.065) and low pre-albumin (P=0.056) levels as risk factors for decreased compliance. However, none of them was retained as an independent risk factor after multivariate analysis. Interestingly, 17 potential explanatory parameters, such as upper GI cancer, weight loss, reduced appetite or co-morbidities, did not show any significant correlation with reduced intake of nutritional supplements. CONCLUSIONS: Reduced compliance with preoperative nutritional interventions remains a major issue because the expected benefit depends on the actual intake. Seemingly, obvious reasons could not be retained as valid explanations. Compliance seems thus to be primarily a question of will and information; the importance of nutritional supplementation needs to be emphasized by specific patients' education.
Resumo:
MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.
Resumo:
Brain oxidative processes play a major role in age-related cognitive decline, thus consumption of antioxidant-rich foods might help preserve cognition. Our aim was to assess whether consumption of antioxidant-rich foods in the Mediterranean diet relates to cognitive function in the elderly. In asymptomatic subjects at high cardiovascular risk (n = 447; 52% women; age 55-80 y) enrolled in the PREDIMED study, a primary prevention dietary-intervention trial, we assessed food intake and cardiovascular risk profile, determined apolipoprotein E genotype, and used neuropsychological tests to evaluate cognitive function.We also measured urinary polyphenols as an objective biomarker of intake. Associations between energy-adjusted food consumption, urinary polyphenols, and cognitive scores were assessed by multiple linear regression models adjusted for potential confounders. Consumption of some foods was independently related to better cognitive function. The specific associations [regression coefficients (95% confidence intervals)] were: total olive oil with immediate verbal memory [0.755 (0.151-1.358)]; virgin olive oil and coffee with delayed verbal memory [0.163 (0.010-0.316) and 0.294 (0.055-0.534), respectively];walnuts with working memory [1.191 (0.061-2.322)]; and wine with Mini-Mental State Examination scores [0.252 (0.006-0.496)]. Urinary polyphenols were associated with better scores in immediate verbal memory [1.208 (0.236-2.180)]. Increased consumption of antioxidant-rich foods in general and of polyphenols in particular is associated with better cognitive performance in elderly subjects at high cardiovascular risk. The results reinforce the notion that Mediterranean diet components might counteract age-related cognitive decline.
Resumo:
Adipose tissue (AT) is distributed as large differentiated masses, and smaller depots covering vessels, and organs, as well as interspersed within them. The differences between types and size of cells makes AT one of the most disperse and complex organs. Lipid storage is partly shared by other tissues such as muscle and liver. We intended to obtain an approximate estimation of the size of lipid reserves stored outside the main fat depots. Both male and female rats were made overweight by 4-weeks feeding of a cafeteria diet. Total lipid content was analyzed in brain, liver, gastrocnemius muscle, four white AT sites: subcutaneous, perigonadal, retroperitoneal and mesenteric, two brown AT sites (interscapular and perirenal) and in a pool of the rest of organs and tissues (after discarding gut contents). Organ lipid content was estimated and tabulated for each individual rat. Food intake was measured daily. There was a surprisingly high proportion of lipid not accounted for by the main macroscopic AT sites, even when brain, liver and BAT main sites were discounted. Muscle contained about 8% of body lipids, liver 1-1.4%, four white AT sites lipid 28-63% of body lipid, and the rest of the body (including muscle) 38-44%. There was a good correlation between AT lipid and body lipid, but lipid in"other organs" was highly correlated too with body lipid. Brain lipid was not. Irrespective of dietary intake, accumulation of body fat was uniform both for the main lipid storage and handling organs: large masses of AT (but also liver, muscle), as well as in the"rest" of tissues. These storage sites, in specialized (adipose) or not-specialized (liver, muscle) tissues reacted in parallel against a hyperlipidic diet challenge. We postulate that body lipid stores are handled and regulated coordinately, with a more centralized and overall mechanisms than usually assumed.
Resumo:
OBJECTIVE: To test the hypothesis that substituting artificially sweetened beverages (ASB) for sugar-sweetened beverages (SSB) decreases intrahepatocellular lipid concentrations (IHCL) in overweight subjects with high SSB consumption. METHODS: About 31 healthy subjects with BMI greater than 25 kg/m(2) and a daily consumption of at least 660 ml SSB were randomized to a 12-week intervention in which they replaced SSBs with ASBs. Their IHCL (magnetic resonance spectroscopy), visceral adipose tissue volume (VAT; magnetic resonance imaging), food intake (2-day food records), and fasting blood concentrations of metabolic markers were measured after a 4-week run-in period and after a 12-week period with ASB or control (CTRL). RESULTS: About 27 subjects completed the study. IHCL was reduced to 74% of the initial values with ASB (N = 14; P < 0.05) but did not change with CTRL. The decrease in IHCL attained with ASB was more important in subjects with IHCL greater than 60 mmol/l than in subjects with low IHCL. ALT decreased significantly with SSB only in subjects with IHCL greater than 60 mmol/l. There was otherwise no significant effect of ASB on body weight, VAT, or metabolic markers. CONCLUSIONS: In subjects with overweight or obesity and a high SSB intake, replacing SSB with ASB decreased intrahepatic fat over a 12-week period.
Resumo:
Corticosterone is an important hormone of the stress response that regulates physiological processes and modifies animal behavior. While it positively acts on locomotor activity, it may negatively affect reproduction and social activity. This suggests that corticosterone may promote behaviors that increase survival at the cost of reproduction. In this study, we experimentally investigate the link between corticosterone levels and survival in adult common lizards (Lacerta vivipara) by comparing corticosterone-treated with placebo-treated lizards. We experimentally show that corticosterone enhances energy expenditure, daily activity, food intake, and it modifies the behavioral time budget. Enhanced appetite of corticosterone-treated individuals compensated for increased energy expenditure and corticosterone-treated males showed increased survival. This suggests that corticosterone may promote behaviors that reduce stress and it shows that corticosterone per se does not reduce but directly or indirectly increases longer-term survival. This suggests that the production of corticosterone as a response to a stressor may be an adaptive mechanism that even controls survival.
Resumo:
The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function.
Resumo:
The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function.
Resumo:
Neuropeptide Y (NPY) is an abundant neurotransmitter in the brain and sympathetic nervous system (SNS). Hypothalamic NPY is known to be a key player in food intake and energy expenditure. NPY’s role in cardiovascular regulation has also been shown. In humans, a Leucine 7 to Proline 7 single nucleotide polymorphism (p.L7P) in the signal peptide of the NPY gene has been associated with traits of metabolic syndrome. The p.L7P subjects also show increased stress-related release of NPY, which suggests that more NPY is produced and released from SNS. The main objective of this study was to create a novel mouse model with noradrenergic cell-targeted overexpression of NPY, and to characterize the metabolic and vascular phenotype of this model. The mouse model was named OE-NPYDBH mouse. Overexpression of NPY in SNS and brain noradrenergic neurons led to increased adiposity without significant weight gain or increased food intake. The mice showed lipid accumulation in the liver at young age, which together with adiposity led to impaired glucose tolerance and hyperinsulinemia with age. The mice displayed stress-related increased mean arterial blood pressure, increased plasma levels of catecholamines and enhanced SNS activity measured by GDP binding activity to brown adipose tissue mitochondria. Sexual dimorphism in NPY secretion pattern in response to stress was also seen. In an experimental model of vascular injury, the OE-NPYDBH mice developed more pronounced neointima formation compared with wildtype controls. These results together with the clinical data indicate that NPY in noradrenergic cells plays an important role in the pathogenesis of metabolic syndrome and related diseases. Furthermore, new insights on the role of the extrahypothalamic NPY in the process have been obtained. The OE-NPYDBH model provides an important tool for further stress and metabolic syndrome-related studies.
Resumo:
Background. The “Cooking and Active Leisure” Tu y Alícia por la Salud (CAL-TAS) Program is a schoolbased pilot that addresses healthy lifestyle needs of Spanish secondary school students with initiatives that research has proven to improve dietary and physical activity behaviors. Objective. The objectives were to perform a Program Impact Pathways (PIP) analysis to describe key activities and processes of the CAL-TAS Program, identify Critical Quality Control Points (CCPs), and identify a suite of common indicators of healthy lifestyles to be applied across participant schools. Methods. The CAL-TAS Program designers and implementation team developed this PIP analysis through an iterative process and presented the results for feedback at the seven-country Healthy Lifestyles Program Evaluation Workshop held in Granada, Spain, 13–14 September 2013, under the auspices of the Mondelēz International Foundation. Results. The team identified three PIP CCPs: teachers’ motivation and training, changes in students’ knowledge of healthy lifestyles, and changes in students’ healthy lifestyle behavior. The selected indicators of the program’s impact on healthy lifestyles are adequacy of food intake, level of knowledge of healthy lifestyles gained, and adequacy of physical activity level according to World Health Organization recommendations. A clear definition of impact indicators, as well as collection of accurate data on healthy lifestyle behaviors and knowledge, is essential to understanding the effectiveness of this program before it can be scaled up. Conclusions. CAL-TAS is an effective secondary school-based program encouraging healthy lifestyles. The PIP analysis was instrumental in identifying CCPs to sustain and improve the quality of the program. The team hopes to sustain and improve the program through these program evaluation recommendations.
Resumo:
Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders.