946 resultados para pooled sequencing
Resumo:
Over 250 Mendelian traits and disorders, caused by rare alleles have been mapped in the canine genome. Although each disease is rare in the dog as a species, they are collectively common and have major impact on canine health. With SNP-based genotyping arrays, genome-wide association studies (GWAS) have proven to be a powerful method to map the genomic region of interest when 10-20 cases and 10-20 controls are available. However, to identify the genetic variant in associated regions, fine-mapping and targeted re-sequencing is required. Here we present a new approach using whole-genome sequencing (WGS) of a family trio without prior GWAS. As a proof-of-concept, we chose an autosomal recessive disease known as hereditary footpad hyperkeratosis (HFH) in Kromfohrl änder dogs. To our knowledge, this is the first time this family trio WGS-approach, has successfully been used to identify a genetic variant that perfectly segregates with a canine disorder. The sequencing of three Kromfohrl änder dogs from a family trio (an affected offspring and both its healthy parents) resulted in an average genome coverage of 9.2X per individual. After applying stringent filtering criteria for candidate causative coding variants, 527 single nucleotide variants (SNVs) and 15 indels were found to be homozygous in the affected offspring and heterozygous in the parents. Using the computer software packages ANNOVAR and SIFT to functionally annotate coding sequence differences and to predict their functional effect, resulted in seven candidate variants located in six different genes. Of these, only FAM83G:c155G>C (p.R52P) was found to be concordant in eight additional cases and 16 healthy Kromfohrl änder dogs.
Resumo:
OBJECTIVES The purpose of this study was to compare the 2-year safety and effectiveness of new- versus early-generation drug-eluting stents (DES) according to the severity of coronary artery disease (CAD) as assessed by the SYNTAX (Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery) score. BACKGROUND New-generation DES are considered the standard-of-care in patients with CAD undergoing percutaneous coronary intervention. However, there are few data investigating the effects of new- over early-generation DES according to the anatomic complexity of CAD. METHODS Patient-level data from 4 contemporary, all-comers trials were pooled. The primary device-oriented clinical endpoint was the composite of cardiac death, myocardial infarction, or ischemia-driven target-lesion revascularization (TLR). The principal effectiveness and safety endpoints were TLR and definite stent thrombosis (ST), respectively. Adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated at 2 years for overall comparisons, as well as stratified for patients with lower (SYNTAX score ≤11) and higher complexity (SYNTAX score >11). RESULTS A total of 6,081 patients were included in the study. New-generation DES (n = 4,554) compared with early-generation DES (n = 1,527) reduced the primary endpoint (HR: 0.75 [95% CI: 0.63 to 0.89]; p = 0.001) without interaction (p = 0.219) between patients with lower (HR: 0.86 [95% CI: 0.64 to 1.16]; p = 0.322) versus higher CAD complexity (HR: 0.68 [95% CI: 0.54 to 0.85]; p = 0.001). In patients with SYNTAX score >11, new-generation DES significantly reduced TLR (HR: 0.36 [95% CI: 0.26 to 0.51]; p < 0.001) and definite ST (HR: 0.28 [95% CI: 0.15 to 0.55]; p < 0.001) to a greater extent than in the low-complexity group (TLR pint = 0.059; ST pint = 0.013). New-generation DES decreased the risk of cardiac mortality in patients with SYNTAX score >11 (HR: 0.45 [95% CI: 0.27 to 0.76]; p = 0.003) but not in patients with SYNTAX score ≤11 (pint = 0.042). CONCLUSIONS New-generation DES improve clinical outcomes compared with early-generation DES, with a greater safety and effectiveness in patients with SYNTAX score >11.
Resumo:
OBJECTIVES To assess the clinical profile and long-term mortality in SYNTAX score II based strata of patients who received percutaneous coronary interventions (PCI) in contemporary randomized trials. BACKGROUND The SYNTAX score II was developed in the randomized, all-comers' SYNTAX trial population and is composed by 2 anatomical and 6 clinical variables. The interaction of these variables with the treatment provides individual long-term mortality predictions if a patient undergoes coronary artery bypass grafting (CABG) or PCI. METHODS Patient-level (n=5433) data from 7 contemporary coronary drug-eluting stent (DES) trials were pooled. The mortality for CABG or PCI was estimated for every patient. The difference in mortality estimates for these two revascularization strategies was used to divide the patients into three groups of theoretical treatment recommendations: PCI, CABG or PCI/CABG (the latter means equipoise between CABG and PCI for long term mortality). RESULTS The three groups had marked differences in their baseline characteristics. According to the predicted risk differences, 5115 patients could be treated either by PCI or CABG, 271 should be treated only by PCI and, rarely, CABG (n=47) was recommended. At 3-year follow-up, according to the SYNTAX score II recommendations, patients recommended for CABG had higher mortality compared to the PCI and PCI/CABG groups (17.4%; 6.1% and 5.3%, respectively; P<0.01). CONCLUSIONS The SYNTAX score II demonstrated capability to help in stratifying PCI procedures.
Resumo:
BACKGROUND The distribution of thrombus-containing lesions (TCLs) in an all-comer population admitted with a heterogeneous clinical presentation (stable, ustable angina, or an acute coronary syndrome) and treated with percutaneous coronary intervention is yet unclear, and the long-term prognostic implications are still disputed. This study sought to assess the distribution and prognostic implications of coronary thrombus, detected by coronary angiography, in a population recruited in all-comer percutaneous coronary intervention trials. METHODS AND RESULTS Patient-level data from 3 contemporary coronary stent trials were pooled by an independent academic research organization (Cardialysis, Rotterdam, the Netherlands). Clinical outcomes in terms of major adverse cardiac events (major adverse cardiac events, a composite of death, myocardial infarction, and repeat revascularization), death, myocardial infarction, and repeated revascularization were compared between patients with and without angiographic TCL. Preprocedural TCL was present in 257 patients (5.8%) and absent in 4193 (94.2%) patients. At 3-year follow-up, there was no difference for major adverse cardiac events (25.3 versus 25.4%; P=0.683); all-cause death (7.4 versus 6.8%; P=0.683); myocardial infarction (5.8 versus 6.0%; P=0.962), and any revascularizations (17.5 versus 17.7%; P=0.822) between patients with and without TCL. The comparison of outcomes in groups weighing the jeopardized myocardial by TCL also did not show a significant difference. TCL were seen more often in the first 2 segments of the right (43.6%) and left anterior descending (36.8%) coronary arteries. The association of TCL and bifurcation lesions was present in 40.1% of the prespecified segments. CONCLUSIONS TCL involved mainly the proximal coronary segments and did not have any effect on clinical outcomes. A more detailed thrombus burden quantification is required to investigate its prognostic implications. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00114972, NCT01443104, NCT00617084.
Resumo:
OBJECTIVE Intraarticular gadolinium-enhanced magnetic resonance arthrography (MRA) is commonly applied to characterize morphological disorders of the hip. However, the reproducibility of retrieving anatomic landmarks on MRA scans and their correlation with intraarticular pathologies is unknown. A precise mapping system for the exact localization of hip pathomorphologies with radial MRA sequences is lacking. Therefore, the purpose of the study was the establishment and validation of a reproducible mapping system for radial sequences of hip MRA. MATERIALS AND METHODS Sixty-nine consecutive intraarticular gadolinium-enhanced hip MRAs were evaluated. Radial sequencing consisted of 14 cuts orientated along the axis of the femoral neck. Three orthopedic surgeons read the radial sequences independently. Each MRI was read twice with a minimum interval of 7 days from the first reading. The intra- and inter-observer reliability of the mapping procedure was determined. RESULTS A clockwise system for hip MRA was established. The teardrop figure served to determine the 6 o'clock position of the acetabulum; the center of the greater trochanter served to determine the 12 o'clock position of the femoral head-neck junction. The intra- and inter-observer ICCs to retrieve the correct 6/12 o'clock positions were 0.906-0.996 and 0.978-0.988, respectively. CONCLUSIONS The established mapping system for radial sequences of hip joint MRA is reproducible and easy to perform.
Resumo:
Familial acute myeloid leukemia is rare and linked to germline mutations in RUNX1, GATA2 or CCAAT/enhancer binding protein-α (CEBPA). We re-evaluated a large family with acute myeloid leukemia originally seen at NIH in 1969. We utilized whole-exome sequencing to study this family, and conducted in silico bioinformatics analysis, protein structural modeling and laboratory experiments to assess the impact of the identified CEBPA Q311P mutation. Unlike most previously identified germline mutations in CEBPA, which were N-terminal frameshift mutations, we identified a novel Q311P variant that was located in the C-terminal bZip domain of C/EBPα. Protein structural modeling suggested that the Q311P mutation alters the ability of the CEBPA dimer to bind DNA. Electrophoretic mobility shift assays showed that the Q311P mutant had attenuated binding to DNA, as predicted by the protein modeling. Consistent with these findings, we found that the Q311P mutation has reduced transactivation, consistent with a loss-of-function mutation. From 45 years of follow-up, we observed incomplete penetrance (46%) of CEBPA Q311P. This study of a large multi-generational pedigree reveals that a germline mutation in the C-terminal bZip domain can alter the ability of C/EBP-α to bind DNA and reduces transactivation, leading to acute myeloid leukemia.
Resumo:
OBJECTIVES This study sought to evaluate: 1) the effect of impaired renal function on long-term clinical outcomes in women undergoing percutaneous coronary intervention (PCI) with drug-eluting stent (DES); and 2) the safety and efficacy of new-generation compared with early-generation DES in women with chronic kidney disease (CKD). BACKGROUND The prevalence and effect of CKD in women undergoing PCI with DES is unclear. METHODS We pooled patient-level data for women enrolled in 26 randomized trials. The study population was categorized by creatinine clearance (CrCl) <45 ml/min, 45 to 59 ml/min, and ≥60 ml/min. The primary endpoint was the 3-year rate of major adverse cardiovascular events (MACE). Participants for whom baseline creatinine was missing were excluded from the analysis. RESULTS Of 4,217 women included in the pooled cohort treated with DES and for whom serum creatinine was available, 603 (14%) had a CrCl <45 ml/min, 811 (19%) had a CrCl 45 to 59 ml/min, and 2,803 (66%) had a CrCl ≥60 ml/min. A significant stepwise gradient in risk for MACE was observed with worsening renal function (26.6% vs. 15.8% vs. 12.9%; p < 0.01). Following multivariable adjustment, CrCl <45 ml/min was independently associated with a higher risk of MACE (adjusted hazard ratio: 1.56; 95% confidence interval: 1.23 to 1.98) and all-cause mortality (adjusted hazard ratio: 2.67; 95% confidence interval: 1.85 to 3.85). Compared with older-generation DES, the use of newer-generation DES was associated with a reduction in the risk of cardiac death, myocardial infarction, or stent thrombosis in women with CKD. The effect of new-generation DES on outcomes was uniform, between women with or without CKD, without evidence of interaction. CONCLUSIONS Among women undergoing PCI with DES, CKD is a common comorbidity associated with a strong and independent risk for MACE that is durable over 3 years. The benefits of newer-generation DES are uniform in women with or without CKD.
Resumo:
BACKGROUND The safety and efficacy of new-generation drug-eluting stents (DES) in women with multiple atherothrombotic risk (ATR) factors is unclear. METHODS AND RESULTS We pooled patient-level data for women enrolled in 26 randomized trials. Study population was categorized based on the presence or absence of high ATR, which was defined as having history of diabetes mellitus, prior percutaneous or surgical coronary revascularization, or prior myocardial infarction. The primary end point was major adverse cardiovascular events defined as a composite of all-cause mortality, myocardial infarction, or target lesion revascularization at 3 years of follow-up. Out of 10 449 women included in the pooled database, 5333 (51%) were at high ATR. Compared with women not at high ATR, those at high ATR had significantly higher risk of major adverse cardiovascular events (15.8% versus 10.6%; adjusted hazard ratio: 1.53; 95% confidence interval: 1.34-1.75; P=0.006) and all-cause mortality. In high-ATR risk women, the use of new-generation DES was associated with significantly lower risk of 3-year major adverse cardiovascular events (adjusted hazard ratio: 0.69; 95% confidence interval: 0.52-0.92) compared with early-generation DES. The benefit of new-generation DES on major adverse cardiovascular events was uniform between high-ATR and non-high-ATR women, without evidence of interaction (Pinteraction=0.14). At landmark analysis, in high-ATR women, stent thrombosis rates were comparable between DES generations in the first year, whereas between 1 and 3 years, stent thrombosis risk was lower with new-generation devices. CONCLUSIONS Use of new-generation DES even in women at high ATR is associated with a benefit consistent over 3 years of follow-up and a substantial improvement in very-late thrombotic safety.
Resumo:
BACKGROUND Diabetes mellitus and angiographic coronary artery disease complexity are intertwined and unfavorably affect prognosis after percutaneous coronary interventions, but their relative impact on long-term outcomes after percutaneous coronary intervention with drug-eluting stents remains controversial. This study determined drug-eluting stents outcomes in relation to diabetic status and coronary artery disease complexity as assessed by the Synergy Between PCI With Taxus and Cardiac Surgery (SYNTAX) score. METHODS AND RESULTS In a patient-level pooled analysis from 4 all-comers trials, 6081 patients were stratified according to diabetic status and according to the median SYNTAX score ≤11 or >11. The primary end point was major adverse cardiac events, a composite of cardiac death, myocardial infarction, and clinically indicated target lesion revascularization within 2 years. Diabetes mellitus was present in 1310 patients (22%), and new-generation drug-eluting stents were used in 4554 patients (75%). Major adverse cardiac events occurred in 173 diabetics (14.5%) and 436 nondiabetic patients (9.9%; P<0.001). In adjusted Cox regression analyses, SYNTAX score and diabetes mellitus were both associated with the primary end point (P<0.001 and P=0.028, respectively; P for interaction, 0.07). In multivariable analyses, diabetic versus nondiabetic patients had higher risks of major adverse cardiac events (hazard ratio, 1.25; 95% confidence interval, 1.03-1.53; P=0.026) and target lesion revascularization (hazard ratio, 1.54; 95% confidence interval, 1.18-2.01; P=0.002) but similar risks of cardiac death (hazard ratio, 1.41; 95% confidence interval, 0.96-2.07; P=0.08) and myocardial infarction (hazard ratio, 0.89; 95% confidence interval, 0.64-1.22; P=0.45), without significant interaction with SYNTAX score ≤11 or >11 for any of the end points. CONCLUSIONS In this population treated with predominantly new-generation drug-eluting stents, diabetic patients were at increased risk for repeat target-lesion revascularization consistently across the spectrum of disease complexity. The SYNTAX score was an independent predictor of 2-year outcomes but did not modify the respective effect of diabetes mellitus. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00297661, NCT00389220, NCT00617084, and NCT01443104.
Resumo:
Next-generation DNA sequencing platforms can effectively detect the entire spectrum of genomic variation and is emerging to be a major tool for systematic exploration of the universe of variants and interactions in the entire genome. However, the data produced by next-generation sequencing technologies will suffer from three basic problems: sequence errors, assembly errors, and missing data. Current statistical methods for genetic analysis are well suited for detecting the association of common variants, but are less suitable to rare variants. This raises great challenge for sequence-based genetic studies of complex diseases.^ This research dissertation utilized genome continuum model as a general principle, and stochastic calculus and functional data analysis as tools for developing novel and powerful statistical methods for next generation of association studies of both qualitative and quantitative traits in the context of sequencing data, which finally lead to shifting the paradigm of association analysis from the current locus-by-locus analysis to collectively analyzing genome regions.^ In this project, the functional principal component (FPC) methods coupled with high-dimensional data reduction techniques will be used to develop novel and powerful methods for testing the associations of the entire spectrum of genetic variation within a segment of genome or a gene regardless of whether the variants are common or rare.^ The classical quantitative genetics suffer from high type I error rates and low power for rare variants. To overcome these limitations for resequencing data, this project used functional linear models with scalar response to develop statistics for identifying quantitative trait loci (QTLs) for both common and rare variants. To illustrate their applications, the functional linear models were applied to five quantitative traits in Framingham heart studies. ^ This project proposed a novel concept of gene-gene co-association in which a gene or a genomic region is taken as a unit of association analysis and used stochastic calculus to develop a unified framework for testing the association of multiple genes or genomic regions for both common and rare alleles. The proposed methods were applied to gene-gene co-association analysis of psoriasis in two independent GWAS datasets which led to discovery of networks significantly associated with psoriasis.^
Resumo:
A clone of the primary Eco R1 family of human DNA sequences has been used as an indicator sequence for detecting alterations induced by a toxic agent. Specific clones of this family have been examined and compared to the consensus sequence to determine the normal variability of this family. Though variations were observed, data indicated that such clones can be used to study induced DNA modifications. This DNA was exposed to the toxic agent dimethyl sulfate under various conditions and a distinct pattern of aberrations was shown to occur. It is suggested that this approach be used to characterize patterns of damage induced by various agents in the ultimate development of a system capable of monitoring human genotoxic exposure. ^
Resumo:
Next-generation sequencing (NGS) technology has become a prominent tool in biological and biomedical research. However, NGS data analysis, such as de novo assembly, mapping and variants detection is far from maturity, and the high sequencing error-rate is one of the major problems. . To minimize the impact of sequencing errors, we developed a highly robust and efficient method, MTM, to correct the errors in NGS reads. We demonstrated the effectiveness of MTM on both single-cell data with highly non-uniform coverage and normal data with uniformly high coverage, reflecting that MTM’s performance does not rely on the coverage of the sequencing reads. MTM was also compared with Hammer and Quake, the best methods for correcting non-uniform and uniform data respectively. For non-uniform data, MTM outperformed both Hammer and Quake. For uniform data, MTM showed better performance than Quake and comparable results to Hammer. By making better error correction with MTM, the quality of downstream analysis, such as mapping and SNP detection, was improved. SNP calling is a major application of NGS technologies. However, the existence of sequencing errors complicates this process, especially for the low coverage (
Resumo:
My dissertation focuses on two aspects of RNA sequencing technology. The first is the methodology for modeling the overdispersion inherent in RNA-seq data for differential expression analysis. This aspect is addressed in three sections. The second aspect is the application of RNA-seq data to identify the CpG island methylator phenotype (CIMP) by integrating datasets of mRNA expression level and DNA methylation status. Section 1: The cost of DNA sequencing has reduced dramatically in the past decade. Consequently, genomic research increasingly depends on sequencing technology. However it remains elusive how the sequencing capacity influences the accuracy of mRNA expression measurement. We observe that accuracy improves along with the increasing sequencing depth. To model the overdispersion, we use the beta-binomial distribution with a new parameter indicating the dependency between overdispersion and sequencing depth. Our modified beta-binomial model performs better than the binomial or the pure beta-binomial model with a lower false discovery rate. Section 2: Although a number of methods have been proposed in order to accurately analyze differential RNA expression on the gene level, modeling on the base pair level is required. Here, we find that the overdispersion rate decreases as the sequencing depth increases on the base pair level. Also, we propose four models and compare them with each other. As expected, our beta binomial model with a dynamic overdispersion rate is shown to be superior. Section 3: We investigate biases in RNA-seq by exploring the measurement of the external control, spike-in RNA. This study is based on two datasets with spike-in controls obtained from a recent study. We observe an undiscovered bias in the measurement of the spike-in transcripts that arises from the influence of the sample transcripts in RNA-seq. Also, we find that this influence is related to the local sequence of the random hexamer that is used in priming. We suggest a model of the inequality between samples and to correct this type of bias. Section 4: The expression of a gene can be turned off when its promoter is highly methylated. Several studies have reported that a clear threshold effect exists in gene silencing that is mediated by DNA methylation. It is reasonable to assume the thresholds are specific for each gene. It is also intriguing to investigate genes that are largely controlled by DNA methylation. These genes are called “L-shaped” genes. We develop a method to determine the DNA methylation threshold and identify a new CIMP of BRCA. In conclusion, we provide a detailed understanding of the relationship between the overdispersion rate and sequencing depth. And we reveal a new bias in RNA-seq and provide a detailed understanding of the relationship between this new bias and the local sequence. Also we develop a powerful method to dichotomize methylation status and consequently we identify a new CIMP of breast cancer with a distinct classification of molecular characteristics and clinical features.
Resumo:
Paracrine motogenic factors, including motility cytokines and extracellular matrix molecules secreted by normal cells, can stimulate metastatic cell invasion. For extracellular matrix molecules, both the intact molecules and the degradative products may exhibit these activities, which in some cases are not shared by the intact molecules. We found that human peritumoral and lung fibroblasts secrete motility-stimulating activity for several recently established human sarcoma cell strains. The motility of lung metastasis-derived human SYN-1 sarcoma cells was preferentially stimulated by human lung and peritumoral fibroblast motility-stimulating factors (FMSFs). FMSFs were nondialyzable, susceptible to trypsin, and sensitive to dithiothreitol. Cycloheximide inhibited accumulation of FMSF activity in conditioned medium; however, addition of cycloheximide to the migration assay did not significantly affect motility-stimulating activity. Purified hepatocyte growth factor/scatter factor (HGF/SF), rabbit anti-hHGF, and RT-PCR analysis of peritumoral and lung fibroblast HGF/SF mRNA expression indicated that FMSF activity was unrelated to HGF/SF. Partial purification of FMSF by gel exclusion chromatography revealed several peaks of activity, suggesting multiple FMSF molecules or complexes.^ We purified the fibroblast motility-stimulating factor from human lung fibroblast-conditioned medium to apparent homogeneity by sequential heparin affinity chromatography and DEAE anion exchange chromatography. Lysylendopeptidase C digestion of FMSF and sequencing of peptides purified by reverse phase HPLC after digestion identified it as an N-terminal fragment of human fibronectin. Purified FMSF stimulated predominantly chemotaxis but chemokinesis as well of SYN-1 sarcoma cells and was chemotactic for a variety of human sarcoma cells, including fibrosarcoma, leiomyosarcoma, liposarcoma, synovial sarcoma and neurofibrosarcoma cells. The motility-stimulating activity present in HLF-CM was completely eliminated by either neutralization or immunodepletion with a rabbit anti-human-fibronectin antibody, thus further confirming that the fibronectin fragment was the FMSF responsible for the motility stimulation of human soft tissue sarcoma cells. Since human soft tissue sarcomas have a distinctive hematogenous metastatic pattern (predominantly lung), FMSF may play a role in this process. ^
Resumo:
Background: Zooplankton play an important role in our oceans, in biogeochemical cycling and providing a food source for commercially important fish larvae. However, difficulties in correctly identifying zooplankton hinder our understanding of their roles in marine ecosystem functioning, and can prevent detection of long term changes in their community structure. The advent of massively parallel Next Generation Sequencing technology allows DNA sequence data to be recovered directly from whole community samples. Here we assess the ability of such sequencing to quantify the richness and diversity of a mixed zooplankton assemblage from a productive monitoring site in the Western English Channel. Methodology/Principle Findings: Plankton WP2 replicate net hauls (200 µm) were taken at the Western Channel Observatory long-term monitoring station L4 in September 2010 and January 2011. These samples were analysed by microscopy and metagenetic analysis of the 18S nuclear small subunit ribosomal RNA gene using the 454 pyrosequencing platform. Following quality control a total of 419,042 sequences were obtained for all samples. The sequences clustered in to 205 operational taxonomic units using a 97% similarity cut-off. Allocation of taxonomy by comparison with the National Centre for Biotechnology Information database identified 138 OTUs to species level, 11 to genus level and 1 to order, <2.5% of sequences were classified as unknowns. By comparison a skilled microscopic analyst was able to routinely enumerate only 75 taxonomic groups. Conclusions: The percentage of OTUs assigned to major eukaryotic taxonomic groups broadly aligns between the metagenetic and morphological analysis and are dominated by Copepoda. However, the metagenetics reveals a previously hidden taxonomic richness, especially for Copepoda and meroplankton such as Bivalvia, Gastropoda and Polychaeta. It also reveals rare species and parasites. We conclude that Next Generation Sequencing of 18S amplicons is a powerful tool for estimating diversity and species richness of zooplankton communities.