989 resultados para polynomial algorithm
Resumo:
A simple but efficient algorithm is presented for linear programming. The algorithm computes the projection matrix exactly once throughout the computation unlike that of Karmarkar’s algorithm where in the projection matrix is computed at each and every iteration. The algorithm is best suitable to be implemented on a parallel architecture. Complexity of the algorithm is being studied.
Resumo:
With the advent of VLSI it has become possible to map parallel algorithms for compute-bound problems directly on silicon. Systolic architecture is very good candidate for VLSI implementation because of its regular and simple design, and regular communication pattern. In this paper, a systolic algorithm and corresponding systolic architecture, a linear systolic array, for the scanline-based hidden surface removal problem in three-dimensional computer graphics have been proposed. The algorithm is based on the concept of sample spans or intervals. The worst case time taken by the algorithm is O(n), n being the number of segments in a scanline. The time taken by the algorithm for a given scene depends on the scene itself, and on an average considerable improvement over the worst case behaviour is expected. A pipeline scheme for handling the I/O process has also been proposed which is suitable for VLSI implementation of the algorithm.
Resumo:
We present a low-complexity algorithm based on reactive tabu search (RTS) for near maximum likelihood (ML) detection in large-MIMO systems. The conventional RTS algorithm achieves near-ML performance for 4-QAM in large-MIMO systems. But its performance for higher-order QAM is far from ML performance. Here, we propose a random-restart RTS (R3TS) algorithm which achieves significantly better bit error rate (BER) performance compared to that of the conventional RTS algorithm in higher-order QAM. The key idea is to run multiple tabu searches, each search starting with a random initial vector and choosing the best among the resulting solution vectors. A criterion to limit the number of searches is also proposed. Computer simulations show that the R3TS algorithm achieves almost the ML performance in 16 x 16 V-BLAST MIMO system with 16-QAM and 64-QAM at significantly less complexities than the sphere decoder. Also, in a 32 x 32 V-BLAST MIMO system, the R3TS performs close to ML lower bound within 1.6 dB for 16-QAM (128 bps/Hz), and within 2.4 dB for 64-QAM (192 bps/Hz) at 10(-3) BER.
Resumo:
A new fast and efficient marching algorithm is introduced to solve the basic quasilinear, hyperbolic partial differential equations describing unsteady, flow in conduits by the method of characteristics. The details of the marching method are presented with an illustration of the waterhammer problem in a simple piping system both for friction and frictionless cases. It is shown that for the same accuracy the new marching method requires fewer computational steps, less computer memory and time.
Resumo:
A simple and efficient algorithm for the bandwidth reduction of sparse symmetric matrices is proposed. It involves column-row permutations and is well-suited to map onto the linear array topology of the SIMD architectures. The efficiency of the algorithm is compared with the other existing algorithms. The interconnectivity and the memory requirement of the linear array are discussed and the complexity of its layout area is derived. The parallel version of the algorithm mapped onto the linear array is then introduced and is explained with the help of an example. The optimality of the parallel algorithm is proved by deriving the time complexities of the algorithm on a single processor and the linear array.
Resumo:
For the specific case of binary stars, this paper presents signal-to-noise ratio (SNR) calculations for the detection of the parity (the side of the brighter component) of the binary using the double correlation method. This double correlation method is a focal plane version of the well-known Knox-Thompson method used in speckle interferometry. It is shown that SNR for parity detection using double correlation depends linearly on binary separation. This new result was entirely missed by previous analytical calculations dealing with a point source. It is concluded that, for magnitudes relevant to the present day speckle interferometry and for binary separations close to the diffraction limit, speckle masking has better SNR for parity detection.
Resumo:
The K-means algorithm for clustering is very much dependent on the initial seed values. We use a genetic algorithm to find a near-optimal partitioning of the given data set by selecting proper initial seed values in the K-means algorithm. Results obtained are very encouraging and in most of the cases, on data sets having well separated clusters, the proposed scheme reached a global minimum.
Resumo:
In this paper we develop a multithreaded VLSI processor linear array architecture to render complex environments based on the radiosity approach. The processing elements are identical and multithreaded. They work in Single Program Multiple Data (SPMD) mode. A new algorithm to do the radiosity computations based on the progressive refinement approach[2] is proposed. Simulation results indicate that the architecture is latency tolerant and scalable. It is shown that a linear array of 128 uni-threaded processing elements sustains a throughput close to 0.4 million patches/sec.
Resumo:
We consider the problem of minimizing the total completion time on a single batch processing machine. The set of jobs to be scheduled can be partitioned into a number of families, where all jobs in the same family have the same processing time. The machine can process at most B jobs simultaneously as a batch, and the processing time of a batch is equal to the processing time of the longest job in the batch. We analyze that properties of an optimal schedule and develop a dynamic programming algorithm of polynomial time complexity when the number of job families is fixed. The research is motivated by the problem of scheduling burn-in ovens in the semiconductor industry
Resumo:
Let G be a simple, undirected, finite graph with vertex set V(G) and edge set E(C). A k-dimensional box is a Cartesian product of closed intervals a(1), b(1)] x a(2), b(2)] x ... x a(k), b(k)]. The boxicity of G, box(G) is the minimum integer k such that G can be represented as the intersection graph of k-dimensional boxes, i.e. each vertex is mapped to a k-dimensional box and two vertices are adjacent in G if and only if their corresponding boxes intersect. Let P = (S, P) be a poset where S is the ground set and P is a reflexive, anti-symmetric and transitive binary relation on S. The dimension of P, dim(P) is the minimum integer l such that P can be expressed as the intersection of t total orders. Let G(P) be the underlying comparability graph of P. It is a well-known fact that posets with the same underlying comparability graph have the same dimension. The first result of this paper links the dimension of a poset to the boxicity of its underlying comparability graph. In particular, we show that for any poset P, box(G(P))/(chi(G(P)) - 1) <= dim(P) <= 2box(G(P)), where chi(G(P)) is the chromatic number of G(P) and chi(G(P)) not equal 1. The second result of the paper relates the boxicity of a graph G with a natural partial order associated with its extended double cover, denoted as G(c). Let P-c be the natural height-2 poset associated with G(c) by making A the set of minimal elements and B the set of maximal elements. We show that box(G)/2 <= dim(P-c) <= 2box(G) + 4. These results have some immediate and significant consequences. The upper bound dim(P) <= 2box(G(P)) allows us to derive hitherto unknown upper bounds for poset dimension. In the other direction, using the already known bounds for partial order dimension we get the following: (I) The boxicity of any graph with maximum degree Delta is O(Delta log(2) Delta) which is an improvement over the best known upper bound of Delta(2) + 2. (2) There exist graphs with boxicity Omega(Delta log Delta). This disproves a conjecture that the boxicity of a graph is O(Delta). (3) There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on n vertices with a factor of O(n(0.5-epsilon)) for any epsilon > 0, unless NP=ZPP.
Resumo:
We consider the problem of computing an approximate minimum cycle basis of an undirected non-negative edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. Although in most such applications any cycle basis can be used, a low weight cycle basis often translates to better performance and/or numerical stability. Despite the fact that the problem can be solved exactly in polynomial time, we design approximation algorithms since the performance of the exact algorithms may be too expensive for some practical applications. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time O(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time O(n(3+2/k) ), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega) ) bound. We also present a 2-approximation algorithm with expected running time O(M-omega root n log n), a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.
Resumo:
Presented here, in a vector formulation, is an O(mn2) direct concise algorithm that prunes/identifies the linearly dependent (ld) rows of an arbitrary m X n matrix A and computes its reflexive type minimum norm inverse A(mr)-, which will be the true inverse A-1 if A is nonsingular and the Moore-Penrose inverse A+ if A is full row-rank. The algorithm, without any additional computation, produces the projection operator P = (I - A(mr)- A) that provides a means to compute any of the solutions of the consistent linear equation Ax = b since the general solution may be expressed as x = A(mr)+b + Pz, where z is an arbitrary vector. The rank r of A will also be produced in the process. Some of the salient features of this algorithm are that (i) the algorithm is concise, (ii) the minimum norm least squares solution for consistent/inconsistent equations is readily computable when A is full row-rank (else, a minimum norm solution for consistent equations is obtainable), (iii) the algorithm identifies ld rows, if any, and reduces concerned computation and improves accuracy of the result, (iv) error-bounds for the inverse as well as the solution x for Ax = b are readily computable, (v) error-free computation of the inverse, solution vector, rank, and projection operator and its inherent parallel implementation are straightforward, (vi) it is suitable for vector (pipeline) machines, and (vii) the inverse produced by the algorithm can be used to solve under-/overdetermined linear systems.