885 resultados para piezoelectric ceramic element
Resumo:
The estrogen-responsive element (ERE) present in the 5'-flanking region of the Xenopus laevis vitellogenin (vit) gene B1 has been characterized by transient expression analysis of chimeric vit-tk-CAT (chloramphenicol acetyltransferase) gene constructs transfected into the human estrogen-responsive MCF-7 cell line. The vit B1 ERE behaves like an inducible enhancer, since it is able to confer estrogen inducibility to the heterologous HSV thymidine kinase (tk) promoter in a relative position- and orientation-independent manner. In this assay, the minimal B1 ERE is 33 bp long and consists of two 13 bp imperfect palindromic elements both of which are required for the enhancer activity. A third imperfect palindromic element is present further upstream within the 5'-flanking region of the gene but is unable to confer hormone responsiveness by itself. Similarly, neither element forming the B1 ERE can alone confer estrogen inducibility to the tk promoter. However, in combinations of two, all three imperfect palindromes can act cooperatively to form a functional ERE. In contrast a single 13 bp perfect palindromic element, GGTCACTGTGACC, such as the one found upstream of the vit gene A2, is itself sufficient to act as a fully active ERE. Single point mutations within this element abolish estrogen inducibility, while a defined combination of two mutations converts this ERE into a glucocorticoid-responsive element.
Resumo:
BACKGROUND: Articular surfaces reconstruction is essential in total shoulder arthroplasty. Because of the limited glenoid bone support, thin glenoid component could improve anatomical reconstruction, but adverse mechanical effects might appear. METHODS: With a numerical musculoskeletal shoulder model, we analysed and compared three values of thickness of a typical all-polyethylene glenoid component: 2, 4 (reference) and 6mm. A loaded movement of abduction in the scapular plane was simulated. We evaluated the humeral head translation, the muscle moment arms, the joint force, the articular contact pattern, and the polyethylene and cement stress. Findings Decreasing polyethylene thickness from 6 to 2mm slightly increased humeral head translation and muscle moment arms. This induced a small decreased of the joint reaction force, but important increase of stress within the polyethylene and the cement mantel. Interpretation The reference thickness of 4mm seems a good compromise to avoid stress concentration and joint stuffing.
Resumo:
The highway departments of the states which use integral abutments in bridge design were contacted in order to study the extent of integral abutment use in skewed bridges and to survey the different guidelines used for analysis and design of integral abutments in skewed bridges. The variation in design assumptions and pile orientations among the various states in their approach to the use of integral abutments on skewed bridges is discussed. The problems associated with the treatment of the approach slab, backfill, and pile cap, and the reason for using different pile orientations are summarized in the report. An algorithm based on a state-of-the-art nonlinear finite element procedure previously developed by the authors was modified and used to study the influence of different factors on behavior of piles in integral abutment bridges. An idealized integral abutment was introduced by assuming that the pile is rigidly cast into the pile cap and that the approach slab offers no resistance to lateral thermal expansion. Passive soil and shear resistance of the cap are neglected in design. A 40-foot H pile (HP 10 X 42) in six typical Iowa soils was analyzed for fully restrained pile head and pinned pile head. According to numerical results, the maximum safe length for fully restrained pile head is one-half the maximum safe length for pinned pile head. If the pile head is partially restrained, the maximum safe length will lie between the two limits. The numerical results from an investigation of the effect of predrilled oversized holes indicate that if the length of the predrilled oversized hole is at least 4 feet below the ground, the vertical load-carrying capacity of the H pile is only reduced by 10 percent for 4 inches of lateral displacement in very stiff clay. With no predrilled oversized hole, the pile failed before the 4-inch lateral displacement was reached. Thus, the maximum safe lengths for integral abutment bridges may be increased by predrilling. Four different typical Iowa layered soils were selected and used in this investigation. In certain situations, compacted soil (> 50 blow count in standard penetration tests) is used as fill on top of natural soil. The numerical results showed that the critical conditions will depend on the length of the compacted soil. If the length of the compacted soil exceeds 4 feet, the failure mechanism for the pile is similar to one in a layer of very stiff clay. That is, the vertical load-carrying capacity of the H pile will be greatly reduced as the specified lateral displacement increases.
Resumo:
Este articulo pretende mostrar los avances e investigaciones màs recientes sobre el estudio del entorno en la formación del oído humano, entendiéndolo como una primera configuración pre-musical. Un breve repaso a los textos sagrados y míticos de los más variados tiempos y lugares nos permitirá reflexionar acerca de la enorme importancia del sonido en nuestra educación, tanto en el ámbito físico como emocional e intelectual. Se da un repaso a los efectos más clásicos del sonido sobre el cuerpo y la mente, a fin de entender la importancia de tomar conciencia de nuestro paisaje sonoro cotidiano. Posteriormente se explicita la evolución del oído humano en crecimiento del niño hasta llegar a la educación musical, haciendo especial hincapié en las relaciones entre la música y el lenguaje a partir de la audición y los primeros pasos en el aprendizaje del habla.
Resumo:
We describe the effect of guanidinylation of the aminoglycoside moiety on acridine-neamine-containing ligands for the stem-loop structure located at the exon 10-5′-intron junction of Tau pre-mRNA, an important regulatory element of tau gene alternative splicing. On the basis of dynamic combinatorial chemistry experiments, ligands that combine guanidinoneamine and two different acridines were synthesized and their RNA-binding properties were compared with those of their amino precursors. Fluorescence titration experiments and UV-monitored melting curves revealed that guanidinylation has a positive effect both on the binding affinity and specificity of the ligands for the stemloop RNA, as well as on the stabilization of all RNA sequences evaluated, particularly some mutated sequences associated with the development of FTDP-17 tauopathy. However, this correlation between binding affinity and stabilization due to guanidinylation was only found in ligands containing a longer spacer between the acridine and guanidinoneamine moieties, since a shorter spacer produced the opposite effect (e.g. lower binding affinity and lower stabilization). Furthermore, spectroscopic studies suggest that ligand binding does not significantly change the overall RNA structure upon binding (circular dichroism) and that the acridine moiety might intercalate near the bulged region of the stem->loop structure (UV-Vis and NMR spectroscopy).
Resumo:
Pseudomonas sp. strain B13 is a bacterium known to degrade chloroaromatic compounds. The properties to use 3- and 4-chlorocatechol are determined by a self-transferable DNA element, the clc element, which normally resides at two locations in the cell's chromosome. Here we report the complete nucleotide sequence of the clc element, demonstrating the unique catabolic properties while showing its relatedness to genomic islands and integrative and conjugative elements rather than to other known catabolic plasmids. As far as catabolic functions, the clc element harbored, in addition to the genes for chlorocatechol degradation, a complete functional operon for 2-aminophenol degradation and genes for a putative aromatic compound transport protein and for a multicomponent aromatic ring dioxygenase similar to anthranilate hydroxylase. The genes for catabolic functions were inducible under various conditions, suggesting a network of catabolic pathway induction. For about half of the open reading frames (ORFs) on the clc element, no clear functional prediction could be given, although some indications were found for functions that were similar to plasmid conjugation. The region in which these ORFs were situated displayed a high overall conservation of nucleotide sequence and gene order to genomic regions in other recently completed bacterial genomes or to other genomic islands. Most notably, except for two discrete regions, the clc element was almost 100% identical over the whole length to a chromosomal region in Burkholderia xenovorans LB400. This indicates the dynamic evolution of this type of element and the continued transition between elements with a more pathogenic character and those with catabolic properties.
Resumo:
A clear and rigorous definition of muscle moment-arms in the context of musculoskeletal systems modelling is presented, using classical mechanics and screw theory. The definition provides an alternative to the tendon excursion method, which can lead to incorrect moment-arms if used inappropriately due to its dependency on the choice of joint coordinates. The definition of moment-arms, and the presented construction method, apply to musculoskeletal models in which the bones are modelled as rigid bodies, the joints are modelled as ideal mechanical joints and the muscles are modelled as massless, frictionless cables wrapping over the bony protrusions, approximated using geometric surfaces. In this context, the definition is independent of any coordinate choice. It is then used to solve a muscle-force estimation problem for a simple 2D conceptual model and compared with an incorrect application of the tendon excursion method. The relative errors between the two solutions vary between 0% and 100%.
Resumo:
Stable protein-DNA complexes can be assembled in vitro at the 5' end of Xenopus laevis vitellogenin genes using extracts of nuclei from estrogen-induced frog liver and visualized by electron microscopy. Complexes at the three following sites can be identified on the gene B2: the transcription initiation site, the estrogen responsive element (ERE) and in the first intron. The complex at the transcription initiation site is stabilized by dinucleotides and thus represents a ternary transcription complex. The formation of the complexes at the two other sites is enhanced by estrogen and is reduced by tamoxifen, an antagonist of estrogen, while this latter effect is reversed by adding an excess of hormone. No sequence homology is apparent between the site containing the ERE and the binding site in intron I and functional tests in MCF-7 cells suggest that these two sites are not equivalent. Finally, we made use of previously characterized deletion mutants of the 5' flanking region of the gene B1, a close relative of the gene B2, to demonstrate that the 13-bp palindromic core element of the ERE is involved in the formation of the complexes observed upstream of the transcription initiation site.
Resumo:
Genomic islands are large DNA segments, present in most bacterial genome, that are acquired via horizontal gene transfer and contribute to the rapid bacterial evolution and adaptation of the host cell. Here we focus on the clc element (or ICEclc), a 103‑kb genomic island first discovered in Pseudomonas knackmussii B13, as a model of this diverse group of mobile genetic elements. ICEclc is normally integrated in the host bacterial chromosome but can excise and transfer to a new host by conjugation. In this chapter we review the basic features of ICEclc, the mechanisms of its life‑style as well as evolutionary relationships with other known and unknown elements in a variety of Proteobacteria.