987 resultados para physics.atom-ph
Resumo:
Self-assembly of highly stoichiometric SiC quantum dots still remains a major challenge for the gas/plasma-based nanodot synthesis. By means of a multiscale hybrid numerical simulation of the initial stage (0.1-2.5 s into the process) of deposition of SiCSi (100) quantum dot nuclei, it is shown that equal Si and kst atom deposition fluxes result in strong nonstoichiometric nanodot composition due to very different surface fluxes of Si and C adatoms to the quantum dots. At this stage, the surface fluxes of Si and C adatoms to SiC nanodots can be effectively controlled by manipulating the SiC atom influx ratio and the Si (100) surface temperature. It is demonstrated that at a surface temperature of 800 K the surface fluxes can be equalized after only 0.05 s into the process; however, it takes more then 1 s at a surface temperature of 600 K. Based on the results of this study, effective strategies to maintain a stoichiometric ([Si] [C] =1:1) elemental ratio during the initial stages of deposition of SiCSi (100) quantum dot nuclei in a neutral/ionized gas-based process are proposed.
Resumo:
Multiscale hybrid simulations that bridge the nine-order-of-magnitude spatial gap between the macroscopic plasma nanotools and microscopic surface processes on nanostructured solids are described. Two specific examples of carbon nanotip-like and semiconductor quantum dot nanopatterns are considered. These simulations are instrumental in developing physical principles of nanoscale assembly processes on solid surfaces exposed to low-temperature plasmas.
Resumo:
Austinite (CaZnAsO4⋅OH) is a unique secondary mineral in arsenic-contaminated mine wastes. The infrared and Raman spectroscopies were used to characterize the austenite vibrations. The IR bands at 369, 790 and 416 cm−1 are assigned to the ν2, ν3 and ν4 vibrations of AsO43− unit, respectively. The Raman bands at 814, 779 and 403 cm−1 correspond to the ν1, ν3 and ν4 vibrations of AsO43− unit respectively. The sharp bands at 3265 cm−1 for IR and 3270 cm−1 both reveals that the structural hydroxyl units exist in the austenite structure. The IR and Raman spectra both show that some SO4 units isomorphically replace AsO4 in austinite. X-ray single crystal diffraction provides the arrangement of each atom in the mineral structure, and also confirms that the conclusions made from the vibrational spectra. Micro-powder diffraction was used to confirm our mineral identification due to the small quantity of the austenite crystals.
Resumo:
Introduction Intense exercise induced acidosis occurs from the accumulation of hydrogen ions as by-products of anaerobic metabolism. Oral ingestion of ß-alanine, a limiting precursor of the intracellular physiochemical buffer carnosine in skeletal muscle, may counteract any detrimental effect of acidosis and benefit performance. The aim of this study was to investigate the effect of ß-alanine as an ergogenic aid during high intensity exercise performance in healthy males. Methods Five males ingested either ß-alanine (BAl) (4.8 g.d-1 for 4wk, then 6.4 g.d-1 for 2wk) or placebo (Pl) (CaCO3) in a crossover design with 6 wk washout between. Following supplementation, participants performed two different intense exercise protocols over consecutive days. On the first day a repeated sprint ability (RSA) test of 5 x 6s, with 24s rest periods, was performed. On the second day a cycling capacity test measuring the time to exhaustion (TTE) was performed at 110% of their max workload achieved in a pre supplementation max test (CCT110%). Non-invasive quantification of carnosine, prior to, and following each supplementation, with magnetic resonance spectrometry was performed in the soleus and gastrocnemius. Time to fatigue (CCT110%), peak and mean power (RSA), blood pH, and plasma lactate were measured. Results Muscle carnosine concentration was not different prior to ß-alanine supplementation and increased 18% in the soleus and 26% in the gastrocnemius, respectively with 6 wk supplementation. There was no difference in the measured performance variables during the RSA test (peak and average power output). TTE during the CCT110% was significantly enhanced following the ingestion of BAl (155s ± 19.03) compared to Pl (134s ± 26.16). No changes were observed in blood pH during either exercise protocol and during the recovery from exercise. Plasma lactate in the BAl condition was significantly higher than Pl only from the 15th minute following exercise during the CCT110%. FIG. 1: Changes in carnosine concentration in the gastrocnemius prior and post 6 week chronic supplementation of placebo and β-alanine. Values expressed as mean.* p<0.05 from Pl at 6 weeks, # p<0.05 from pre supplementation. Conclusion/Discussion Greater muscle carnosine content following 6wk supplementation of ß-alanine enhanced the potential for intracellular buffering capacity. However, this only translated into enhanced performance during the CCT110% high intensity cycling exercise protocol, with no change observed during the RSA test. No differences in post exercise and recovery plasma lactates and blood pH, indicates that 6wks ß-alanine supplementation has no effect on anaerobic metabolism during multiple bout high intensity exercise. Changes in plasma lactate during recovery supports that ß-alanine supplementation may affect anaerobic metabolism however during single bout high intensity.
Resumo:
Intense exercise induced acidosis occurs after accumulation of hydrogen ions as by-products of anaerobic metabolism. Oral ingestion of ß-alanine, a limiting precursor of the intracellular physiochemical buffer carnosine in skeletal muscle, may counteract detrimental effects of acidosis and benefit performance. This study aimed to investigate the effect of ß-alanine as an ergogenic aid during high intensity exercise performance. Five healthy males ingested either ß-alanine or placebo (Pl) (CaCO3) in a crossover design with 6 wk washout between. Participants performed two different intense exercise protocols over consecutive days. On the first day a repeated sprint ability (RSA) test was performed. On the second day a cycling capacity test measuring the time to exhaustion (TTE) was performed at 110% of maximum workload achieved in a pre supplementation max test (CCT110%). Non-invasive quantification of carnosine, prior to, and following each supplementation, with in vivo magnetic resonance spectrometry was performed in the soleus and gastrocnemius muscle. Time to fatigue (CCT110%), peak and mean power (RSA), blood pH, and plasma lactate were measured. Muscle carnosine concentration was not different prior to ß-alanine supplementation and increased 18% in the soleus and 26% in the gastrocnemius, respectively after supplementation. There was no difference in the measured performance variables during the RSA test (peak and average power output). TTE during the CCT110% was significantly enhanced following the ingestion of BAl (155s ± 19.03) compared to Pl (134s ± 26.16). No changes were observed in blood pH during either exercise protocol and during the recovery from exercise. Plasma lactate after BAI was significantly higher than Pl only from the 15th minute following exercise during the CCT110%. Greater muscle carnosine content following 6wk supplementation of ß-alanine enhanced the potential for intracellular buffering capacity. This translated into enhanced performance during the CCT110% high intensity cycling exercise protocol but not during the RSA test. The lack of change in plasma lactate or blood pH indicates that 6wks ß-alanine supplementation has no effect on anaerobic metabolism during multiple-bout high-intensity exercise. Changes measured in plasma lactate during recovery support the hypothesis that ß-alanine supplementation may affect anaerobic metabolism particularly during single bout high intensity.
Resumo:
Nano Zero valent iron (Fe0) were reported as an effective material for azo dye removal, however, similar to other nano-materials, ultra-fine powder has a strong tendency to agglomerate into larger particles, resulting in an adverse effect on both effective surface area and catalyst performance. Here we report nano sized Fe0 particles dispersed onto the surface of natural bentonites. X-ray diffraction was used to study the sample phases. Scanning electron microscopy and transmission electron microscopy were applied to study the morphology and morphological changes. Spherical individual Fe0 particles were observed after dispersion onto bentonites, and these samples were used for orange II (OII) decolourization with wide working pH range. Higher reactivity is attributed to good dispersion of Fe0 particles on clay minerals’ surface. This study is significant for providing novel modified clay based catalyst materials for the decolourization of azo dye contaminants from wastewater.
Resumo:
Glassy carbon (GC) electrode modified with a self-assembled monolayer (SAM) of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) was used for the selective and highly sensitive determination of nitric oxide (NO). The SAM of 4α-CoIITAPc was formed on GC electrode by spontaneous adsorption from DMF containing 1 mM 4α-CoIITAPc. The SAM showed two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2 in 0.2 M phosphate buffer (PB) solution (pH 2.5). The SAM modified electrode showed excellent electrocatalytic activity towards the oxidation of nitric oxide (NO) by enhancing its oxidation current with 310 mV less positive potential shift when compared to bare GC electrode. In amperometric measurements, the current response for NO oxidation was linearly increased in the concentration range of 3×10−9 to 30×10−9 M with a detection limit of 1.4×10−10 M (S/N=3). The proposed method showed a better recovery for NO in human blood serum samples.
Resumo:
Self-assembled monomolecular films of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) and 2,9,16,23-tetraaminophthalocyanatocobalt(II) (4β-CoIITAPc) on Au surfaces were prepared by spontaneous adsorption from solution. These films were characterized by cyclic voltammetry and Raman spectroscopy. Both the surface coverage (Γ) and intensity of the in-plane stretching bands obtained from Raman studies vary for these monomolecular films, indicating different orientations adopted by them on Au surfaces. The 4α-CoIITAPc-modified electrode exhibits an E1/2 of 0.35 V, while the 4β-CoIITAPc-modified electrode exhibits an E1/2 of 0.19 V, corresponding to the CoII/CoIII redox couple in 0.1 M H2SO4. The Γ estimated from the charge associated with the oxidation of Co(II) gives (2.62 ± 0.10) × 10-11 mol cm-2 for 4α-CoIITAPc and (3.43 ± 0.14) × 10-10 mol cm-2 for 4β-CoIITAPc. In Raman spectral studies, the intensity ratio between in-plane phthalocyanine (Pc) stretching and the Au−N stretching was found to be 6.6 for 4β-CoIITAPc, while it was 1.6 for 4α-CoIITAPc. The obtained lower Γ and intensity ratio values suggest that 4α-CoIITAPc adopts nearly a parallel orientation on the Au surface, while the higher Γ and intensity ratio values suggest that 4β-CoIITAPc adopts a perpendicular orientation. The electrochemical reduction of dioxygen was carried out using these differently oriented Pc's in phosphate buffer solution (pH 7.2). Both the Pc's catalyze the reduction of dioxygen; however, the 4α-CoIITAPc-modified electrode greatly reduces the dioxygen reduction overpotential compared to 4β-CoIITAPc-modified and bare Au electrodes.
Resumo:
Electropolymerized film of 3,3′,3″,3‴-tetraaminophthalocyanatonickel(II) (p-NiIITAPc) on glassy carbon (GC) electrode was used for the selective and stable determination of 3,4-dihydroxy-l-phenylalanine (l-dopa) in acetate buffer (pH 4.0) solution. Bare GC electrode fails to determine the concentration of l-dopa accurately in acetate buffer solution due to the cyclization reaction of dopaquinone to cyclodopa in solution. On the other hand, p-NiIITAPc electrode successfully determines the concentration of l-dopa accurately because the cyclization reaction was prevented at this electrode. It was found that the electrochemical reaction of l-dopa at the modified electrode is faster than that at the bare GC electrode. This was confirmed from the higher heterogeneous electron transfer rate constant (k0) of l-dopa at p-NiIITAPc electrode (3.35 × 10−2 cm s−1) when compared to that at the bare GC electrode (5.18 × 10−3 cm s−1). Further, it was found that p-NiIITAPc electrode separates the signals of ascorbic acid (AA) and l-dopa in a mixture with a peak separation of 220 mV. Lowest detection limit of 100 nM was achieved at the modified electrode using amperometric method. Common physiological interferents like uric acid, glucose and urea does not show any interference within the potential window of l-dopa oxidation. The present electrode system was also successfully applied to estimate the concentration of l-dopa in the commercially available tablets.
Resumo:
Carbon nanoscrolls (CNSs) are one of the carbon-based nanomaterials similar to carbon nanotubes (CNTs) but are not widely studied in spite of their great potential applications. Their practical applications are hindered by the challenging fabrication of the CNSs. A physical approach has been proposed recently to fabricate the CNS by rolling up a monolayer graphene nanoribbon (GNR) around a CNT driven by the interaction energy between them. In this study, we perform extensive molecular dynamics (MD) simulations to investigate the various factors that impact the formation of the CNS from GNR. Our simulation results show that the formation of the CNS is sensitive to the length of the CNT and temperature. When the GNR is functionalized with hydrogen, the formation of the CNS is determined by the density and distribution of the hydrogen atoms. Graphyne, the allotrope of graphene, is inferior to graphene in the formation of the CNS due to the weaker bonds and the associated smaller atom density. The mechanism behind the rolling of GNR into CNS lies in the balance between the GNR–CNT van der Waals (vdW) interactions and the strain energy of GNR. The present work reveals new important insights and provides useful guidelines for the fabrication of the CNS.
Resumo:
The influence of the membrane active peptides, Tat44–57 (activator in HIV-1) and melittin (active content of bee venom), on self-assembled monolayers of 6-mercaptohexanoic acid (MHA) on gold electrodes has been studied with scanning electrochemical microscopy (SECM). It was found that MHA, when deprotonated at physiological pH, significantly affected the relative rates of electron transfer between the [Fe(CN)6]4− solution based mediator and the underlying gold electrode, predominantly by the electrostatic interaction between the mediator and MHA. Upon the introduction of Tat44–57 ormelittin to the electrolyte, the relative rate of electron transfer through the MHA layer could be increased or decreased depending on the mediator used. However, in all cases it was found that these peptides have the ability to be incorporated into synthetic SAMs, which has implications for future electrochemical studies carried out using cell mimicking membranes immobilised on such layers.
Resumo:
A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 A˚, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced "leopard skin"-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions, can capture processes that are otherwise obscured to the amino acid-based formalism.
Resumo:
Interactions between the anti-carcinogens, bendamustine (BDM) and dexamethasone (DXM), with bovine serum albumin (BSA) were investigated with the use of fluorescence and UV–vis spectroscopies under pseudo-physiological conditions (Tris–HCl buffer, pH 7.4). The static mechanism was responsible for the fluorescence quenching during the interactions; the binding formation constant of the BSA–BDM complex and the binding number were 5.14 × 105 L mol−1 and 1.0, respectively. Spectroscopic studies for the formation of BDM–BSA complex were interpreted with the use of multivariate curve resolution – alternating least squares (MCR–ALS), which supported the complex formation. The BSA samples treated with site markers (warfarin – site I and ibuprofen – site II) were reacted separately with BDM and DXM; while both anti-carcinogens bound to site I, the binding constants suggested that DXM formed a more stable complex. Relative concentration profiles and the fluorescence spectra associated with BDM, DXM and BSA, were recovered simultaneously from the full fluorescence excitation–emission data with the use of the parallel factor analysis (PARAFAC) method. The results confirmed that on addition of DXM to the BDM–BSA complex, the BDM was replaced and the DXM–BSA complex formed; free BDM was released. This finding may have consequences for the transport of these drugs during any anti-cancer treatment.
Resumo:
Particulates with specific sizes and characteristics can induce potent immune responses by promoting antigen uptake of appropriate immuno-stimulatory cell types. Magnetite (Fe3O4) nanoparticles have shown many potential bioapplications due to their biocompatibility and special characteristics. Here, superparamagnetic Fe3O4 nanoparticles (SPIONs) with high magnetization value (70emug-1) were stabilized with trisodium citrate and successfully conjugated with a model antigen (ovalbumin, OVA) via N,N'-carbonyldiimidazole (CDI) mediated reaction, to achieve a maximum conjugation capacity at approximately 13μgμm-2. It was shown that different mechanisms governed the interactions between the OVA molecules and magnetite nanoparticles at different pH conditions. We evaluated as-synthesized SPION against commercially available magnetite nanoparticles. The cytotoxicity of these nanoparticles was investigated using mammalian cells. The reported CDI-mediated reaction can be considered as a potential approach in conjugating biomolecules onto magnetite or other biodegradable nanoparticles for vaccine delivery.