976 resultados para pesticides contamination
Resumo:
Enzyme-linked immunosorbent assays (ELISAs) are the most extensively studied types of immunoassay and their application in pesticide residue monitoring is an area with enormous potential for growth. In comparison with classical analytical methods, ELISA methods offer the possibility of highly sensitive, relatively rapid, and cost-effective measurements. This review introduces the general ELISA formats used, focusing on their use in pesticide analysis. Identifying and studying the effects of interferences in immunoassays is an active area of research and we discuss the matrix effects observed in several studies involving e.g. food, crop and environmental samples. The procedures to eliminate the matrix interferences are briefly discussed. (C) 1998 Elsevier B.V. B.V.
Resumo:
The contamination of water by metal compounds is a worldwide environmental problem. Concentrations of metals are widely related to biochemical values which are used in disease diagnosis due to environmental toxicity. The acute combined effects of cadmium and nickel on biochemical parameters were determined and compared with those of Cd2+ or Ni2+ alone in rats. Male adult rats were given drinking solutions of CdCl2 [Cd(II) cation, 100 mg/liter] or NiSO4 [Ni(II) cation, 100 mg/liter]. For the combined treatment, the animals (Ni+Cd) received both Ni(II)) cation (100 mg/liter) and Cd(II) cation (100 mg/liter). Nickel treatment induced increased alanine transaminase (ALT) activity and hepatotoxicity, but not renal injury. In contrast, cadmium exposure produced hepatic, renal and myocardial damage, characterized by increased creatinine, total and direct bilirubin concentrations and increased ALT and lactate dehydrogenase (LDH) activities. The combined effect Ni-Cd is less toxic than cadmium alone, suggesting antagonism between these toxicants. The toxicity of nickel and cadmium, alone and in combination, decreased Cu-Zn superoxide dismutase (SOD) activity and increased lipoperoxide formation. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The fate of eight fungicides (benalaxyl, fenarimol, iprodione, metalaxyl, myclobutanil, procymidone, triadimefon, and vinclozolin) and five insecticides (dimethoate, fenthion, methidathion, parathion methyl, and quinalphos) in wine and its byproducts (cake and lees) during the production of distilled spirits was studied. Among the pesticides studied, only fenthion, quinalphos, and vinclozolin residues were present in the distilled spirits. During wine distillation, respectively 13% and 5% of the initial residues of fenthion and vinclozolin were transferred to the distilled spirit. Low percentages (2% for fenthion and 0.1% for vinclozolin) of these active ingredients (AI) also passed from the lees to the final-distilled spirit, when samples were fortified at 10.1 and 26.1 ppm for fenthion and vinclozolin, respectively. Quinalphos passed only from the lees to the final-distilled spirit in percentages lower than 1% when samples were fortified at the highest concentration (4.6 ppm).
Resumo:
An automated on-line solid phase extraction procedure followed by liquid chromatography with diode array detection was investigated for the determination of different classes of pesticides in water samples containing varied amount of humic substances. The different pesticides used were: carbendazin, carbofuran, atrazine, diuron, propanil, molinate, alachlor, parathion-ethyl, diazinon, trifluralin and the degradation products deisopropylatrazine and deethylatrazine. Humic substances extracted from a Brazilian sediment were used from 5 to 80 mg/l and their influence on recoveries was evaluated in neutral and acidic media. Recoveries higher than 70% were obtained for all the pesticides, from the preconcentration of 75 mi of aqueous sample fortified at 2 ng/ml using precolumns packed with PLRP-S. Good recoveries were obtained at neutral pH for most of the analytes up to 40 mg/l of humic acid. Only at 80 mg/l the recoveries were significantly affected, both at acidic and neutral pH. The method was applied to the determination of pesticides in river water spiked at 0.1 to 1 ng/ml. Detection limits obtained for water containing 10 mg/l of humic acid were between 0.05 and 0.3 ng/ml.
Resumo:
A simple and efficient method for the simultaneous gas chromatographic determination of ten organochlorine pesticides (alpha-HCH, beta-HCH, gamma-HCH, p,p'-DDT, o,p'-DDT, p,p'-DDD, p,p'-DDE, aldrin, endrin, and dieldrin) and six congeners of PCBs (PCB 28, 52, 118, 138, 153, and 180) in municipal solid waste compost is described. The procedure involves a solid-phase dispersion matrix using celite as dispersant sorbent, alumina as clean up sorbent and hexane-dichloromethane (7:3, v/v) mixture as eluting solvent. An additional purification step with copper was necessary to eliminate sulphur. Analysis of the sample was performed by GC-ECD. The method was validated with fortified samples at two concentration levels (0.025 and 0.05 mg kg(-1)). Average recovery ranged from 77 to 121% with relative standard deviation between 1 and 18%. The detection limits, which ranged from 0.003 to 0.01 mg kg-1, were lower than those established by the Baden-Wurttemberg directive (0.033 mg kg(-1)).
Environmental Behaviour of Metolachlor and Diuron in a Tropical Soil in the Central Region of Brazil
Resumo:
The environmental behaviour of metolachlor and diuron was studied in the Central-western region of Brazil, by means of a field study where six experimental plots were installed. The soil was classified as a Latosol, and the soil horizons were characterized. Sorption of metolachlor and diuron was evaluated in laboratory batch experiments. Metolachlor and diuron were applied to the experimental plots on uncultivated soil in October 2003. From this date to March 2004, the following processes were studied: leaching, runoff and dissipation in top soil. K (oc) of metolachlor varied from 179 to 264 mL g(-1) in the soil horizons. K (oc) of diuron in the Ap horizon was 917 mL g(-1), decreasing significantly in the deeper horizons. Field dissipation half-lives of metolachlor and diuron were 18 and 15 days, respectively. In percolated water, metolachlor was detected in concentrations ranging from 0.02 to 2.84 mu g L-1. In runoff water and sediment, metolachlor was detected in decreasing concentrations throughout the period of study. Losses of 0.02% and 0.54% of the applied amount by leaching and runoff, respectively, were observed confirming the high mobility of this herbicide in the environment. In percolated water, diuron was detected with low frequency but in relatively high concentrations (up to 6.29 mu g L-1). In runoff water and soil, diuron was detected in decreasing concentrations until 70 days after application, totalizing 13.9% during the whole sampling period. These results show the importance of practices to reduce runoff avoiding surface water contamination by these pesticides, particularly diuron.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Sterol biomarkers serve as an alternative method for detecting sewage pollution. Sterols were extracted from samples of surface sediment collected in Cubato (the Vila dos Pescadores and Vila Esperan double dagger a communities) and quantified using GC-MS after Soxhlet extraction, cleanup, and derivatization. Fecal contamination was evaluated based on the concentration of coprostanol and the ratio of the selected sterols. The most abundant sterol was cholestanol, followed by coprostanol. The concentrations of coprostanol in surface sediments ranged from a minimum of 4.21 mu g g(-1) dry sediment (Vila dos Pescadores station) to a maximum of 8.32 mu g g(-1) dry sediment (Vila Esperan double dagger a station). A coprostanol concentration of about 10 mu g g(-1) was found, indicating areas of high sewage contamination. Coprostanol levels at sewage stations were higher than in other Brazilian coastal areas, which may be attributed to the fraction of the population without sanitation services.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)