914 resultados para pacs: information retrieval techniques
Resumo:
Currently there are an overwhelming number of scientific publications in Life Sciences, especially in Genetics and Biotechnology. This huge amount of information is structured in corporate Data Warehouses (DW) or in Biological Databases (e.g. UniProt, RCSB Protein Data Bank, CEREALAB or GenBank), whose main drawback is its cost of updating that makes it obsolete easily. However, these Databases are the main tool for enterprises when they want to update their internal information, for example when a plant breeder enterprise needs to enrich its genetic information (internal structured Database) with recently discovered genes related to specific phenotypic traits (external unstructured data) in order to choose the desired parentals for breeding programs. In this paper, we propose to complement the internal information with external data from the Web using Question Answering (QA) techniques. We go a step further by providing a complete framework for integrating unstructured and structured information by combining traditional Databases and DW architectures with QA systems. The great advantage of our framework is that decision makers can compare instantaneously internal data with external data from competitors, thereby allowing taking quick strategic decisions based on richer data.
Resumo:
El proyecto ATTOS centra su actividad en el estudio y desarrollo de técnicas de análisis de opiniones, enfocado a proporcionar toda la información necesaria para que una empresa o una institución pueda tomar decisiones estratégicas en función a la imagen que la sociedad tiene sobre esa empresa, producto o servicio. El objetivo último del proyecto es la interpretación automática de estas opiniones, posibilitando así su posterior explotación. Para ello se estudian parámetros tales como la intensidad de la opinión, ubicación geográfica y perfil de usuario, entre otros factores, para facilitar la toma de decisiones. El objetivo general del proyecto se centra en el estudio, desarrollo y experimentación de técnicas, recursos y sistemas basados en Tecnologías del Lenguaje Humano (TLH), para conformar una plataforma de monitorización de la Web 2.0 que genere información sobre tendencias de opinión relacionadas con un tema.
Resumo:
En este artículo se presenta un método para recomendar artículos científicos teniendo en cuenta su grado de generalidad o especificidad. Este enfoque se basa en la idea de que personas menos expertas en un tema preferirían leer artículos más generales para introducirse en el mismo, mientras que personas más expertas preferirían artículos más específicos. Frente a otras técnicas de recomendación que se centran en el análisis de perfiles de usuario, nuestra propuesta se basa puramente en el análisis del contenido. Presentamos dos aproximaciones para recomendar artículos basados en el modelado de tópicos (Topic Modelling). El primero de ellos se basa en la divergencia de tópicos que se dan en los documentos, mientras que el segundo se basa en la similitud que se dan entre estos tópicos. Con ambas medidas se consiguió determinar lo general o específico de un artículo para su recomendación, superando en ambos casos a un sistema de recuperación de información tradicional.
Resumo:
This qualitative study focuses on what contributes to making a music information-seeking experience satisfying in the context of everyday life. Data were collected through in-depth interviews conducted with 15 younger adults (18 to 29 years old). The analysis revealed that satisfaction could depend on both hedonic (i.e., experiencing pleasure) and utilitarian outcomes. It was found that two types of utilitarian outcomes contributed to satisfaction: (1) the acquisition of music, and (2) the acquisition of information about music. Information about music was gathered to (1) enrich the listening experience, (2) increase one's music knowledge, and/or (3) optimize future acquisition. This study contributes to a better understanding of music information-seeking behavior in recreational contexts. It also has implications for music information retrieval systems design: results suggest that these systems should be engaging, include a wealth of extra-musical information, allow users to navigate among music items, and encourage serendipitous encountering of music.
Resumo:
This qualitative study focuses on what contributes to making a music information-seeking experience satisfying in the context of everyday life. Data were collected through in-depth interviews conducted with 15 younger adults (18 to 29 years old). The analysis revealed that satisfaction could depend on both hedonic (i.e., experiencing pleasure) and utilitarian outcomes. It was found that two types of utilitarian outcomes contributed to satisfaction: (1) the acquisition of music, and (2) the acquisition of information about music. Information about music was gathered to (1) enrich the listening experience, (2) increase one's music knowledge, and/or (3) optimize future acquisition. This study contributes to a better understanding of music information-seeking behavior in recreational contexts. It also has implications for music information retrieval systems design: results suggest that these systems should be engaging, include a wealth of extra-musical information, allow users to navigate among music items, and encourage serendipitous encountering of music.
Resumo:
Thesis (M.S.)--University of Illinois at Urbana-Champaign.
Resumo:
"February 1986."
Resumo:
Mode of access: Internet.
Resumo:
The main aim of the proposed approach presented in this paper is to improve Web information retrieval effectiveness by overcoming the problems associated with a typical keyword matching retrieval system, through the use of concepts and an intelligent fusion of confidence values. By exploiting the conceptual hierarchy of the WordNet (G. Miller, 1995) knowledge base, we show how to effectively encode the conceptual information in a document using the semantic information implied by the words that appear within it. Rather than treating a word as a string made up of a sequence of characters, we consider a word to represent a concept.
Resumo:
With this paper, we propose a set of techniques to largely automate the process of KA, by using technologies based on Information Extraction (IE) , Information Retrieval and Natural Language Processing. We aim to reduce all the impeding factors mention above and thereby contribute to the wider utility of the knowledge management tools. In particular we intend to reduce the introspection of knowledge engineers or the extended elicitations of knowledge from experts by extensive textual analysis using a variety of methods and tools, as texts are largely available and in them - we believe - lies most of an organization's memory.
Resumo:
In Information Filtering (IF) a user may be interested in several topics in parallel. But IF systems have been built on representational models derived from Information Retrieval and Text Categorization, which assume independence between terms. The linearity of these models results in user profiles that can only represent one topic of interest. We present a methodology that takes into account term dependencies to construct a single profile representation for multiple topics, in the form of a hierarchical term network. We also introduce a series of non-linear functions for evaluating documents against the profile. Initial experiments produced positive results.
Resumo:
Existing theories of semantic cognition propose models of cognitive processing occurring in a conceptual space, where ‘meaning’ is derived from the spatial relationships between concepts’ mapped locations within the space. Information visualisation is a growing area of research within the field of information retrieval, and methods for presenting database contents visually in the form of spatial data management systems (SDMSs) are being developed. This thesis combined these two areas of research to investigate the benefits associated with employing spatial-semantic mapping (documents represented as objects in two- and three-dimensional virtual environments are proximally mapped dependent on the semantic similarity of their content) as a tool for improving retrieval performance and navigational efficiency when browsing for information within such systems. Positive effects associated with the quality of document mapping were observed; improved retrieval performance and browsing behaviour were witnessed when mapping was optimal. It was also shown using a third dimension for virtual environment (VE) presentation provides sufficient additional information regarding the semantic structure of the environment that performance is increased in comparison to using two-dimensions for mapping. A model that describes the relationship between retrieval performance and browsing behaviour was proposed on the basis of findings. Individual differences were not found to have any observable influence on retrieval performance or browsing behaviour when mapping quality was good. The findings from this work have implications for both cognitive modelling of semantic information, and for designing and testing information visualisation systems. These implications are discussed in the conclusions of this work.
Resumo:
Evaluation and benchmarking in content-based image retrieval has always been a somewhat neglected research area, making it difficult to judge the efficacy of many presented approaches. In this paper we investigate the issue of benchmarking for colour-based image retrieval systems, which enable users to retrieve images from a database based on lowlevel colour content alone. We argue that current image retrieval evaluation methods are not suited to benchmarking colour-based image retrieval systems, due in main to not allowing users to reflect upon the suitability of retrieved images within the context of a creative project and their reliance on highly subjective ground-truths. As a solution to these issues, the research presented here introduces the Mosaic Test for evaluating colour-based image retrieval systems, in which test-users are asked to create an image mosaic of a predetermined target image, using the colour-based image retrieval system that is being evaluated. We report on our findings from a user study which suggests that the Mosaic Test overcomes the major drawbacks associated with existing image retrieval evaluation methods, by enabling users to reflect upon image selections and automatically measuring image relevance in a way that correlates with the perception of many human assessors. We therefore propose that the Mosaic Test be adopted as a standardised benchmark for evaluating and comparing colour-based image retrieval systems.