951 resultados para optical switching
Resumo:
This paper presents the design of a dual Z-source inverter that can be used with either a single dc source or two isolated dc sources. Unlike traditional inverters, the integration of a properly designed Z-source network and semiconductor switches to the proposed dual inverter allows buck-boost power conversion to be performed over a wide modulation range with three-level output waveforms generated. The connection of an additional transformer to the inverter ac output also allows all generic wye- or delta-connected loads with three-wire or four-wire configuration to be supplied by the inverter. Modulation-wise, the dual inverter can be controlled using a carefully designed carrier-based pulse-width modulation (PWM) scheme that always will ensure balanced voltage boosting of the Z-source network, while simultaneously achieving reduced common-mode switching. Because of the omission of dead-time delays in the dual inverter PWM scheme, its switched common-mode voltage can be completely eliminated, unlike in traditional inverters where narrow common-mode spikes are still generated. Under semiconductor failure conditions, the presented PWM schemes can easily be modified to allow the inverter to operate without interruption and for cases where two isolated sources are used, zero common-mode voltage can still be ensured. These theoretical findings together with the inverter practicality have been confirmed both in simulations using PSIM with Matlab/Simulink coupler and experimentally using a laboratory implemented inverter prototype.
Resumo:
This paper presents the design of a dual Z-source inverter that can be used with either a single dc source or two isolated dc sources. Unlike traditional inverters, the integration of a properly designed Z-source network and semiconductor switches to the proposed dual inverter allows buck-boost power conversion to be performed over a wide modulation range, with three-level output waveforms generated. The connection of an additional transformer to the inverter ac output also allows all generic wye-or delta-connected loads with three-wire or four-wire configuration to be supplied by the inverter. Modulationwise, the dual inverter can be controlled using a carefully designed carrier-based pulsewidth-modulation (PWM) scheme that will always ensure balanced voltage boosting of the Z-source network while simultaneously achieving reduced common-mode switching. Because of the omission of dead-time delays in the dual-inverter PWM scheme, its switched common-mode voltage can be completely eliminated, unlike in traditional inverters, where narrow common-mode spikes are still generated. Under semiconductor failure conditions, the presented PWM schemes can easily be modified to allow the inverter to operate without interruption, and for cases where two isolated sources are used, zero common-mode voltage can still be ensured. These theoretical findings, together with the inverter practicality, have been confirmed in simulations both using PSIM with Matlab/Simulink coupler and experimentally using a laboratory-implemented inverter prototype.
Resumo:
We report fabrication and optical properties of electrochemically deposited silver nanowires into nanoporous alumina template. A finite element method is used to study plasmonic coupling of dipole emitters with the silver nanowires.
Resumo:
With the rapid development of world-wide wind energy generation using doubly fed induction generations (DFIGs), low voltage ride through (LVRT) has become a great concern. This paper focuses on a unique topology of DFIG called IG connection mode to help the DFIG ride through grid faults smoothly. Transient analysis of IG connection mode is carried out to derive the generator currents. With this analysis, the control strategy for IG connection mode DFIG was developed. From the simulation results, it is clearly visible that IG mode could work in both normal and low grid voltage conditions. Simulation results clearly show that the DFIG with the proposed mode switching control could smoothly ride through low voltage grid faults while satisfying grid code requirements.
Resumo:
A switching control strategy is proposed for current-fed half-bridge converters. An active switch based voltage doubler circuit at the secondary side of the isolation transformer is used to obtain zero-current-switching at turn-off and zero-voltage-switching at turn-on in the primary side switches of the current-fed half-bridge converter. The operation of the current-fed half-bridge converter with the proposed switching control strategy is explained using the equivalent circuit during each sub-interval of operation. The operation of the current-fed halfbridge converter is simulated using MATLAB/Simpower and PSIM to verify the feasibility of the switching control strategy. Experimental results are provided to validate the converter's operation.
Resumo:
A mode switching doubly fed induction generator (MSDFIG) scheme is proposed for the purpose of achieving low-voltage ride-through for wind turbines. The MSDFIG operates as a doubly fed induction generator (DFIG) under normal condition but upon the detection of a low-voltage incident, the generator is to smoothly transfer to operate under the induction generator mode through the switching in of a set of stator-side crowbar. The MSDFIG automatically reverts back to the DFIG mode when network voltage recovers. A new strategy on the control of the crowbar resistance is included. Analysis shows that the proposed MSDFIG scheme can ride through the complete low-voltage and voltage recovery stages. Effectiveness of the scheme is demonstrated through simulation and experiment studies.
Resumo:
We investigate the photoexcited state dynamics in a donor-acceptor copolymer, poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]- pyrrole-1,4-dione-alt-naphthalene} (pDPP-TNT), by picosecond fluorescence and femtosecond transient absorption spectroscopies. Timeresolved fluorescence lifetime measurements of pDPP-TNT thin films reveal that the lifetime of the singlet excited state is 185 ± 5 ps and that singlet-singlet annihilation occurs at excitation photon densities above 6 × 1017 photons/cm3. From the results of singlet-singlet annihilation analysis, we estimate that the single-singlet annihilation rate constant is (6.0 ± 0.2) × 109cm3 s-1 and the singlet diffusion length is -7 nm. From the comparison of femtosecond transient absorption measurements and picosecond fluorescence measurements, it is found that the time profile of the photobleaching signal in the charge-transfer (CT) absorption band coincides with that of the fluorescence intensity and there is no indication of long-lived species, which clearly suggests that charged species, such as polaron pairs and triplet excitons, are not effectively photogenerated in the neat pDPP-TNT polymer.
Resumo:
Two conjugated oligomers, representing elementary segments of fluorene-thiophene copolymers, are compared in terms of the microscopic morphology and the optical properties of thin deposits. The atomic force microscopy morphological data and the solid-state absorption and emission spectra are interpreted in terms of the assembly of the conjugated molecules. The compound with a terthiophene central unit and fluorene end-groups shows well-defined monolayer-by-monolayer assembly into micrometer-long stripe-like structures, with a crystalline herringbone-type organization within the monolayers. Polarized confocal microscopy indicates a strong orientation of the crystalline domains within the stripes. In contrast, the compound with a terfluorene central unit and thiophene end groups forms no textured aggregates and the optical spectra in the solid-state are very similar to those recorded in solution, suggesting that the molecules interact only weakly in the solid. The difference in behaviour between the two compounds most probably originates from their different capability to form densely-packed assemblies of interacting π-systems.
Resumo:
Vertical graphene nanosheets have advantages over their horizontal counterparts, primarily due to the larger surface area available in the vertical systems. Vertical sheets can accommodate more functional particles, and due to the conduction and optical properties of thin graphene, these structures can find niche applications in the development of sensing and energy storage devices. This work is a combined experimental and theoretical study that reports on the synthesis and optical responses of vertical sheets decorated with gold nanoparticles. The findings help in interpreting optical responses of these hybrid graphene structures and are relevant to the development of future sensing platforms.
Resumo:
In the vast majority of cases legal representation in mediation can provide many advantages for clients. However, in some, progress can be thwarted when lawyers do not understand the goals of the mediation process and their dispute resolution advocacy role. This article will explore some of the similarities and differences between the knowledge and skills that lawyers can draw upon when representing clients in adversarial court hearings as compared with non-adversarial settings, such as in mediations. One key distinction is the different approaches that legal representatives can use to effectively act in the best interests of clients. This article will highlight how an appreciation of such distinctions can assist lawyers to “switch” hats between their adversarial and non-adversarial roles. In particular, an understanding that the duty to promote the best interests of clients in mediation is consistent with a collaborative and problem-solving approach can greatly assist in the resolution process.
Resumo:
We propose a topological localization method based on optical flow information. We analyse the statistical characteristics of the optical flow signal and demonstrate that the flow vectors can be used to identify and describe key locations in the environment. The key locations (nodes) correspond to significant scene changes and depth discontinuities. Since optical flow vectors contain position, magnitude and angle information, for each node, we extract low and high order statistical moments of the vectors and use them as descriptors for that node. Once a database of nodes and their corresponding optical flow features is created, the robot can perform topological localization by using the Mahalanobis distance between the current frame and the database. This is supported by field trials, which illustrate the repeatability of the proposed method for detecting and describing key locations in indoor and outdoor environments in challenging and diverse lighting conditions.
Resumo:
Sparse optical flow algorithms, such as the Lucas-Kanade approach, provide more robustness to noise than dense optical flow algorithms and are the preferred approach in many scenarios. Sparse optical flow algorithms estimate the displacement for a selected number of pixels in the image. These pixels can be chosen randomly. However, pixels in regions with more variance between the neighbours will produce more reliable displacement estimates. The selected pixel locations should therefore be chosen wisely. In this study, the suitability of Harris corners, Shi-Tomasi's “Good features to track", SIFT and SURF interest point extractors, Canny edges, and random pixel selection for the purpose of frame-by-frame tracking using a pyramidical Lucas-Kanade algorithm is investigated. The evaluation considers the important factors of processing time, feature count, and feature trackability in indoor and outdoor scenarios using ground vehicles and unmanned aerial vehicles, and for the purpose of visual odometry estimation.
Resumo:
The advent of very high resolution (VHR) optical satellites capable of producing stereo images led to a new era in extracting digital elevation model which commenced with the launch of IKONOS. The special specifications of VHR optical satellites besides, the significant economic profit stimulated other countries and companies to have their constellations such as EROS-A1 and EROS-B1 as the cooperation between Israel and ImageSat. QuickBird, WorldView-1 and WorldVew-2 were launched by DigitalGlobe. ALOS and GeoEye-1 were offered by Japan and GeoEye Respectively. In addition to aforementioned satellites, Indian and South Korea initiated their own constellation by launching CartoSat-1 and KOPOSAT-2 respectively.The availability of all so-called satellites make a huge market of stereo images for extracting of digital elevation model and other correspondent applications such as, producing orthorectifcatin images and updating maps. Therefore, there is a need for a comprehensive comparison for scientific and commercial clients to choose appropriate satellite images and methods of generating digital elevation model to obtain optimum results. This paper will thus give a review about the specifications of VHR optical satellites. Then it will discuss the automatic elaborating of digital elevation model. Finally an overview of studies and corresponding results is reported.
Resumo:
We present a preparation procedure for small sized biocompatibly coated Ag nanoparticles with tunable surface plasmon resonances. The conditions were optimised with respect to the resonance Raman signal enhancement of heme proteins and to the preservation of the native protein structure....