987 resultados para optical model
Resumo:
We propose an approach to optical quantum computation in which a deterministic entangling quantum gate may be performed using, on average, a few hundred coherently interacting optical elements (beam splitters, phase shifters, single photon sources, and photodetectors with feedforward). This scheme combines ideas from the optical quantum computing proposal of Knill, Laflamme, and Milburn [Nature (London) 409, 46 (2001)], and the abstract cluster-state model of quantum computation proposed by Raussendorf and Briegel [Phys. Rev. Lett. 86, 5188 (2001)].
Resumo:
We develop a model for exponential decay of broadband pulses, and examine its implications for experiments on optical precursors. One of the signature features of Brillouin precursors is attenuation with a less rapid decay than that predicted by Beer's Law. Depending on the pulse parameters and the model that is adopted for the dielectric properties of the medium, the limiting z-dependence of the loss has been described as z(-1/2), z(-1/3), exponential, or, in more detailed descriptions, some combination of the above. Experimental results in the search for precursors are examined in light of the different models, and a stringent test for sub-exponential decay is applied to data on propagation of 500 femtosecond pulses through 1-5 meters of water. (C) 2005 Optical Society of America.
Resumo:
Extraction and reconstruction of rectal wall structures from an ultrasound image is helpful for surgeons in rectal clinical diagnosis and 3-D reconstruction of rectal structures from ultrasound images. The primary task is to extract the boundary of the muscular layers on the rectal wall. However, due to the low SNR from ultrasound imaging and the thin muscular layer structure of the rectum, this boundary detection task remains a challenge. An active contour model is an effective high-level model, which has been used successfully to aid the tasks of object representation and recognition in many image-processing applications. We present a novel multigradient field active contour algorithm with an extended ability for multiple-object detection, which overcomes some limitations of ordinary active contour models—"snakes." The core part in the algorithm is the proposal of multigradient vector fields, which are used to replace image forces in kinetic function for alternative constraints on the deformation of active contour, thereby partially solving the initialization limitation of active contour for rectal wall boundary detection. An adaptive expanding force is also added to the model to help the active contour go through the homogenous region in the image. The efficacy of the model is explained and tested on the boundary detection of a ring-shaped image, a synthetic image, and an ultrasound image. The experimental results show that the proposed multigradient field-active contour is feasible for multilayer boundary detection of rectal wall
Resumo:
We present a linear optics quantum computation scheme that employs a new encoding approach that incrementally adds qubits and is tolerant to photon loss errors. The scheme employs a circuit model but uses techniques from cluster-state computation and achieves comparable resource usage. To illustrate our techniques we describe a quantum memory which is fault tolerant to photon loss.
Resumo:
Optical Bloch equations are widely used for describing dynamics in a system consisting molecules, electromagnetic waves, and a thermal bath. We analyze applicability of these equations to a single molecule imbedded in a solid matrix. Classical Bloch equations and the limits of their applicability are derived from more general master equations. Simple and intuitively appealing picture based on stochastic Bloch equations shows that at low temperatures, contrary to common believes, a strong driving field can not only suppress but can also increase decay rates of Rabi oscillations. A physical system where predicted effects can be observed experimentally is suggested. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper we do a detailed numerical investigation of the fault-tolerant threshold for optical cluster-state quantum computation. Our noise model allows both photon loss and depolarizing noise, as a general proxy for all types of local noise other than photon loss noise. We obtain a threshold region of allowed pairs of values for the two types of noise. Roughly speaking, our results show that scalable optical quantum computing is possible in the combined presence of both noise types, provided that the loss probability is less than 3 X 10(-3) and the depolarization probability is less than 10(-4). Our fault-tolerant protocol involves a number of innovations, including a method for syndrome extraction known as telecorrection, whereby repeated syndrome measurements are guaranteed to agree. This paper is an extended version of Dawson.
Resumo:
We have synthesized ternary InGaAs nanowires on (111)B GaAs surfaces by metal-organic chemical vapor deposition. Au colloidal nanoparticles were employed to catalyze nanowire growth. We observed the strong influence of nanowire density on nanowire height, tapering, and base shape specific to the nanowires with high In composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Energy dispersive X-ray spectroscopy analysis together with high-resolution electron microscopy study of individual InGaAs nanowires shows large In/Ga compositional variation along the nanowire supporting the present diffusion model. Photoluminescence spectra exhibit a red shift with decreasing nanowire density due to the higher degree of In incorporation in more sparsely distributed InGaAs nanowires.
Resumo:
Manipulation of micrometer sized particles with optical tweezers can be precisely modeled with electrodynamic theory using Mie's solution for spherical particles or the T-matrix method for more complex objects. We model optical tweezers for a wide range of parameters including size, relative refractive index and objective numerical aperture. We present the resulting landscapes of the trap stiffness and maximum applicable trapping force in the parameter space. These landscapes give a detailed insight into the requirements and possibilities of optical trapping and provide detailed information on trapping of nanometer sized particles or trapping of high index particles like diamond.
Resumo:
The ability to grow microscopic spherical birefringent crystals of vaterite, a calcium carbonate mineral, has allowed the development of an optical microrheometer based on optical tweezers. However, since these crystals are birefringent, and worse, are expected to have non-uniform birefringence, computational modeling of the microrheometer is a highly challenging task. Modeling the microrheometer - and optical tweezers in general - typically requires large numbers of repeated calculations for the same trapped particle. This places strong demands on the efficiency of computational methods used. While our usual method of choice for computational modelling of optical tweezers - the T-matrix method - meets this requirement of efficiency, it is restricted to homogeneous isotropic particles. General methods that can model complex structures such as the vaterite particles, such as finite-difference time-domain (FDTD) or finite-difference frequency-domain (FDFD) methods, are inefficient. Therefore, we have developed a hybrid FDFD/T-matrix method that combines the generality of volume-discretisation methods such as FDFD with the efficiency of the T-matrix method. We have used this hybrid method to calculate optical forces and torques on model vaterite spheres in optical traps. We present and compare the results of computational modelling and experimental measurements.
Resumo:
The successful development and optimisation of optically-driven micromachines will be greatly enhanced by the ability to computationally model the optical forces and torques applied to such devices. In principle, this can be done by calculating the light-scattering properties of such devices. However, while fast methods exist for scattering calculations for spheres and axisymmetric particles, optically-driven micromachines will almost always be more geometrically complex. Fortunately, such micromachines will typically possess a high degree of symmetry, typically discrete rotational symmetry. Many current designs for optically-driven micromachines are also mirror-symmetric about a plane. We show how such symmetries can be used to reduce the computational time required by orders of magnitude. Similar improvements are also possible for other highly-symmetric objects such as crystals. We demonstrate the efficacy of such methods by modelling the optical trapping of a cube, and show that even simple shapes can function as optically-driven micromachines.
Investigation of the Effect of Array Geometry on the Performance of Free-Space Optical Interconnects
Resumo:
The effect of transmitter and receiver array configurations on the stray-light and diffraction-caused crosstalk in free-space optical interconnects was investigated. The optical system simulation software (Code V) is used to simulate both the stray-light and diffraction-caused crosstalk. Experimentally measured, spectrally-resolved, near-field images of VCSEL higher order modes were used as extended sources in our simulation model. In addition, we have included the electrical and optical noise in our analysis to give more accurate overall performance of the FSOI system. Our results show that by changing the square lattice geometry to a hexagonal configuration, we obtain an overall signal-to-noise ratio improvement of 3 dB. Furthermore, system density is increased by up to 4 channels/mm2.
Resumo:
We investigate the effect of transmitter and receiver array configurations on the stray-light and diffraction-caused crosstalk in free-space optical interconnects. The optical system simulation software (Code V) is used to simulate both the stray-light and diffraction-caused crosstalk. Experimentally measured, spectrally-resolved, near-field images of VCSEL higher order modes were used as extended sources in our simulation model. Our results show that by changing the square lattice geometry to a hexagonal configuration, we obtain the reduction in the stray-light crosstalk of up to 9 dB and an overall signal-to-noise ratio improvement of 3 dB.
Resumo:
The Q parameter scales differently with the noise power for the signal-noise and the noise-noise beating terms in scalar and vector models. Some procedures for including noise in the scalar model largely under-estimate the Q parameter. We propose a simple method for including noise within a scalar model which will allow both the noise-noise dominated limit and the signal-noise dominated limit to be treated consistently. © 2005 Elsevier B.V. All rights reserved.
Resumo:
All-optical data processing is expected to play a major role in future optical communications. The fiber nonlinear optical loop mirror (NOLM) is a valuable tool in optical signal processing applications. This paper presents an overview of our recent advances in developing NOLM-based all-optical processing techniques for application in fiber-optic communications. The use of in-line NOLMs as a general technique for all-optical passive 2R (reamplification, reshaping) regeneration of return-to-zero (RZ) on-off keyed signals in both high-speed, ultralong-distance transmission systems and terrestrial photonic networks is reviewed. In this context, a theoretical model enabling the description of the stable propagation of carrier pulses with periodic all-optical self-regeneration in fiber systems with in-line deployment of nonlinear optical devices is presented. A novel, simple pulse processing scheme using nonlinear broadening in normal dispersion fiber and loop mirror intensity filtering is described, and its employment is demonstrated as an optical decision element at a RZ receiver as well as an in-line device to realize a transmission technique of periodic all-optical RZ-nonreturn-to-zero-like format conversion. The important issue of phase-preserving regeneration of phase-encoded signals is also addressed by presenting a new design of NOLM based on distributed Raman amplification in the loop fiber. © 2008 Elsevier Inc. All rights reserved.
Resumo:
Long period gratings (LPGs) were written into a D-shaped optical fibre that has an elliptical core with a W-shaped refractive index profile and the first detailed investigation of such LPGs is presented. The LPGs’ attenuation bands were found to be sensitive to the polarisation of the interrogating light with a spectral separation of about 15 nm between the two orthogonal polarisation states. A finite element method was successfully used to model many of the behavioural features of the LPGs. In addition, two spectrally overlapping attenuation bands corresponding to orthogonal polarisation states were observed; modelling successfully reproduced this spectral feature. The spectral sensitivity of both orthogonal states was experimentally measured with respect to temperature and bending. These LPG devices produced blue and red wavelength shifts depending upon the orientation of the bend with measured maximum sensitivities of -3.56 and +6.51 nm m, suggesting that this type of fibre LPG may be useful as a shape/bend orientation sensor with reduced errors associated with polarisation dependence. The use of neighbouring bands to discriminate between temperature and bending was also demonstrated, leading to an overall curvature error of ±0.14 m-1 and an overall temperature error of ±0.3 °C with a maximum polarisation dependence error of ±8 × 10-2 m-1 for curvature and ±5 × 10-2 °C for temperature.