980 resultados para odontogenesis drugs effects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Several studies had demonstrated the involvement of the dorsolateral portion of periaqueductal grey matter (dlPAG) in defensive responses. This region contains a significant number of neurons containing the enzyme nitric oxide synthase (NOS) and previous studies showed that non-selective NOS inhibition or glutamate NMDA-receptor antagonism in the dlPAG caused anxiolytic-like effects in the elevated plus maze. Methods In the present study we verified if the NMDA/NO pathway in the dlPAG would also involve in the behavioral suppression observed in rats submitted to the Vogel conflict test. In addition, the involvement of this pathway was investigated by using a selective nNOS inhibitor, Nω-propyl-L-arginine (N-Propyl, 0.08 nmol/200 nL), a NO scavenger, carboxy-PTIO (c-PTIO, 2 nmol/200 nL) and a specific NMDA receptor antagonist, LY235959 (4 nmol/200 nL). Results Intra-dlPAG microinjection of these drugs increased the number of punished licks without changing the number of unpunished licks or nociceptive threshold, as measure by the tail flick test. Conclusion The results indicate that activation of NMDA receptors and increased production of NO in the dlPAG are involved in the anxiety behavior displayed by rats in the VCT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background The treatment for the eradication of Helicobacter pylori (H. pylori) is complex; full effectiveness is rarely achieved and it has many adverse effects. In developing countries, increased resistance to antibiotics and its cost make eradication more difficult. Probiotics can reduce adverse effects and improve the infection treatment efficacy. If the first-line therapy fails a second-line treatment using tetracycline, furazolidone and proton-pump inhibitors has been effective and low cost in Brazil; however it implies in a lot of adverse effects. The aim of this study was to minimize the adverse effects and increase the eradication rate applying the association of a probiotic compound to second-line therapy regimen. Methods Patients with peptic ulcer or functional dyspepsia infected by H. pylori were randomized to treatment with the furazolidone, tetracycline and lansoprazole regimen, twice a day for 7 days. In a double-blind study, patients received placebo or a probiotic compound (Lactobacillus acidophilus, Lactobacillus rhamnosus, Bifidobacterium bifidum and Streptococcus faecium) in capsules, twice a day for 30 days. A symptom questionnaire was administered in day zero, after completion of antibiotic therapy, after the probiotic use and eight weeks after the end of the treatment. Upper digestive endoscopy, histological assessment, rapid urease test and breath test were performed before and eight weeks after eradication treatment. Results One hundred and seven patients were enrolled: 21 men with active probiotic and 19 with placebo plus 34 women with active probiotic and 33 with placebo comprising a total of 55 patients with active probiotic and 52 with placebo. Fifty-one patients had peptic ulcer and 56 were diagnosed as functional dyspepsia. The per-protocol eradication rate with active probiotic was 89.8% and with placebo, 85.1% (p = 0.49); per intention to treat, 81.8% and 79.6%, respectively (p = 0.53). The rate of adverse effects at 7 days with the active probiotic was 59.3% and 71.2% with placebo (p = 0.20). At 30 days, it was 44.9% and 60.4%, respectively (p = 0.08). Conclusions The use of this probiotic compound compared to placebo in the proposed regimen in Brazilian patients with peptic ulcer or functional dyspepsia showed no significant difference in efficacy or adverse effects. Trial registration Current Controlled Trials ISRCTN04714018

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: During the neonatal and infancy periods, some chronic liver diseases may lead to progressive hepatic fibrosis, which is a condition that can ultimately result in the loss of organ function and severe portal hypertension necessitating hepatic transplantation. In a previous report, pharmacological interventions were demonstrated to modulate hepatic fibrosis induced by bile duct ligation in young rats. The administration of pentoxifylline or prednisolone, or the combination of both, resulted in reduced fibrogenesis in portal spaces. The objectives of the present study were to evaluate the expression of transforming growth factor β and vascular endothelial growth factor after bile duct ligation in young rats and to assess the effect of those same drugs on cytokine expression. METHODS: In this experimental study, 80 young rats (21 or 22 days old) were submitted either to laparotomy and common bile duct ligation or to sham surgery. The animals were allocated into four groups according to surgical procedure, and the following treatments were administered: (1) common bile duct ligation + distilled water, (2) sham surgery + distilled water, (3) common bile duct ligation + pentoxifylline, or (4) common bile duct ligation + prednisolone. After 30 days, a hepatic fragment was collected from each animal for immunohistochemical analysis using monoclonal antibodies against transforming growth factor β and vascular endothelial growth factor. Digital morphometric and statistical analyses were performed. RESULTS: The administration of pentoxifylline reduced the transforming growth factor β-marked area and the amount of transforming growth factor β expressed in liver tissue. This effect was not observed after the administration of prednisolone. There was a significant reduction in vascular endothelial growth factor expression after the administration of either drug compared with the non-treatment group. CONCLUSIONS: The administration of pentoxifylline to cholestatic young rats resulted in the diminished expression of transforming growth factor β and vascular endothelial growth factor in liver tissue. The administration of steroids resulted in the diminished expression of vascular endothelial growth factor only. These pathways may be involved in hepatic fibrogenesis in young rats submitted to bile duct ligation and exposed to pentoxifylline or prednisolone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Non-steroidal antiinflammatory drugs (NSAIDs) are the most commonly prescribed agents for arthritic patients, although gastric effects limit their long-term use. Considering the reported gastric safety of hydrogen sulfide (H2S)-releasing NSAIDs, in addition to the anti-inflammatory effects of H2S administration to rats with synovitis, we decided to evaluate the effects of the H2S-releasing naproxen derivative ATB-346 in this animal model. Methods Male Wistar rats were anesthetized with inhalatory halothane and pre-treated with equimolar oral doses of either naproxen (0.3, 1, 3 or 10 mg/kg) or ATB-346 (0.48, 1.6, 4.8, or 16 mg/kg) 30 min before the i.art. injection of 7.5 mg of carrageenan (CGN) into the right knee joint cavity. Joint swelling and pain score were assessed after 1, 3 and 5 h, and tactile allodynia after 2 and 4 h. After the last measurement, the joint cavity lavages were performed for counting of the recruited leukocytes. The drugs (at the highest doses) were also tested for their gastric effects by evaluating macroscopical damage score and neutrophil recruitment (measured as myeloperoxidase – MPO activity) in the stomachs 5 h after administration of the drugs. In addition, the serum naproxen pharmacokinetic profiles of both compounds, administered at the highest equimolar doses, were obtained during the first 6 h after dosing. Results At the two highest tested doses, both naproxen and ATB-346 reduced edema and pain score (measured 3 and 5 h after CGN; P < 0.001). Tactile allodynia was similarly inhibited by ~45% 4 h after CGN by both naproxen (at 1, 3 and 10 mg/kg) and ATB-346 (at 1.6 and 4.8 mg/kg; P < 0.001), as well as leukocyte infiltration. Naproxen (but not ATB-346) induced significant gastric damage and, despite the increased gastric MPO activity by ~130% in the naproxen-, but not in the ATB-346-treated rats, this effect was of no statistical significance. Conclusion The presence of a H2S-releasing moiety in the ATB-346 structure does not impair the antiinflammatory activity of the parent compound in rats with CGN-induced synovitis. In addition, released H2S may account for the absence of deleterious gastric effects, thus making of ATB-346 a potentially useful therapeutic alternative to traditional naproxen for treatment of patients with arthritis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Non-steroidal antiinflammatory drugs (NSAIDs) are the most commonly prescribed agents for arthritic patients, although gastric effects limit their long-term use. Considering the reported gastric safety of hydrogen sulfide (H2S)-releasing NSAIDs, in addition to the anti-inflammatory effects of H2S administration to rats with synovitis, we decided to evaluate the effects of the H2S-releasing naproxen derivative ATB-346 in this animal model. METHODS: Male Wistar rats were anesthetized with inhalatory halothane and pre-treated with equimolar oral doses of either naproxen (0.3, 1, 3 or 10 mg/kg) or ATB-346 (0.48, 1.6, 4.8, or 16 mg/kg) 30 min before the i.art. injection of 7.5 mg of carrageenan (CGN) into the right knee joint cavity. Joint swelling and pain score were assessed after 1, 3 and 5 h, and tactile allodynia after 2 and 4 h. After the last measurement, the joint cavity lavages were performed for counting of the recruited leukocytes. The drugs (at the highest doses) were also tested for their gastric effects by evaluating macroscopical damage score and neutrophil recruitment (measured as myeloperoxidase - MPO activity) in the stomachs 5 h after administration of the drugs. In addition, the serum naproxen pharmacokinetic profiles of both compounds, administered at the highest equimolar doses, were obtained during the first 6 h after dosing. RESULTS: At the two highest tested doses, both naproxen and ATB-346 reduced edema and pain score (measured 3 and 5 h after CGN; P < 0.001). Tactile allodynia was similarly inhibited by ~45% 4 h after CGN by both naproxen (at 1, 3 and 10 mg/kg) and ATB-346 (at 1.6 and 4.8 mg/kg; P < 0.001), as well as leukocyte infiltration. Naproxen (but not ATB-346) induced significant gastric damage and, despite the increased gastric MPO activity by ~130% in the naproxen-, but not in the ATB-346-treated rats, this effect was of no statistical significance. CONCLUSION: The presence of a H2S-releasing moiety in the ATB-346 structure does not impair the antiinflammatory activity of the parent compound in rats with CGN-induced synovitis. In addition, released H2S may account for the absence of deleterious gastric effects, thus making of ATB-346 a potentially useful therapeutic alternative to traditional naproxen for treatment of patients with arthritis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutamate acts as a neurotransmitter within the Central Nervous System (CNS) and modifies immune cell activity. In lymphocytes, NMDA glutamate receptors regulate intracellular calcium, the production of reactive oxygen species and cytokine synthesis. MK-801, a NMDA receptor open-channel blocker, inhibits calcium entry into mast cells, thereby preventing mast cell degranulation. Several lines of evidence have shown the involvement of NMDA glutamate receptors in amphetamine (AMPH)-induced effects. AMPH treatment has been reported to modify allergic lung inflammation. This study evaluated the effects of MK-801 (0.25mg/kg) and AMPH (2.0mg/kg), given alone or in combination, on allergic lung inflammation in mice and the possible involvement of NMDA receptors in this process. In OVA-sensitized and challenged mice, AMPH and MK-801 given alone decreased cellular migration into the lung, reduced IL-13 and IL10 levels in BAL supernatant, reduced ICAM-1 and L-selectin expression in granulocytes in the BAL and decreased mast cell degranulation. AMPH treatment also decreased IL-5 levels. When both drugs were administered, treatment with MK-801 reversed the decrease in the number of eosinophils and neutrophils induced by AMPH in the BAL of OVA-sensitized and challenged mice as well as the effects on the expression of L-selectin and ICAM-1 in granulocytes, the IL-10, IL-5 and IL-13 levels in BAL supernatants and increased mast cell degranulation. At the same time, treatment with MK-801, AMPH or with MK-801+AMPH increased corticosterone serum levels in allergic mice. These results are discussed in light of possible indirect effects of AMPH and MK-801 via endocrine outflow from the CNS (i.e., HPA-axis activity) to the periphery and/or as a consequence of the direct action of these drugs on immune cell activity, with emphasis given to mast cell participation in the allergic lung response of mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sudden cardiac death due to ventricular arrhythmia is one of the leading causes of mortality in the world. In the last decades, it has proven that anti-arrhythmic drugs, which prolong the refractory period by means of prolongation of the cardiac action potential duration (APD), play a good role in preventing of relevant human arrhythmias. However, it has long been observed that the “class III antiarrhythmic effect” diminish at faster heart rates and that this phenomenon represent a big weakness, since it is the precise situation when arrhythmias are most prone to occur. It is well known that mathematical modeling is a useful tool for investigating cardiac cell behavior. In the last 60 years, a multitude of cardiac models has been created; from the pioneering work of Hodgkin and Huxley (1952), who first described the ionic currents of the squid giant axon quantitatively, mathematical modeling has made great strides. The O’Hara model, that I employed in this research work, is one of the modern computational models of ventricular myocyte, a new generation began in 1991 with ventricular cell model by Noble et al. Successful of these models is that you can generate novel predictions, suggest experiments and provide a quantitative understanding of underlying mechanism. Obviously, the drawback is that they remain simple models, they don’t represent the real system. The overall goal of this research is to give an additional tool, through mathematical modeling, to understand the behavior of the main ionic currents involved during the action potential (AP), especially underlining the differences between slower and faster heart rates. In particular to evaluate the rate-dependence role on the action potential duration, to implement a new method for interpreting ionic currents behavior after a perturbation effect and to verify the validity of the work proposed by Antonio Zaza using an injected current as a perturbing effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Among all cancer types leukemia represents the leading cause of cancer death in man younger than 40 years. Single-target drug therapy has generally been highly ineffective in treating complex diseases such as cancer. A growing interest has been directed toward multi-target drugs able to hit multiple targets. In this context, plant products, based on their intrinsic complexity, could represent an interesting and promising approach. Aim of the research followed during my PhD was to indentify and study novel natural compounds for the treatment of acute leukemias. Two potential multi-target drugs were identified in Hemidesmus indicus and piperlongumine. Methodology/Principal Findings: A variety of cellular assays and flow cytometry were performed on different cell lines. We demonstrated that Hemidesmus modulates many components of intracellular signaling pathways involved in cell viability and proliferation and alters gene and protein expression, eventually leading to tumor cell death, mediated by a loss of mitochondrial transmembrane potential, raise of [Ca2+]i, inhibition of Mcl-1, increasing Bax/Bcl-2 ratio, and ROS formation. Moreover, we proved that the decoction causes differentiation of HL-60 and regulates angiogenesis of HUVECs in hypoxia and normoxia, by the inhibition of new vessel formation and the processes of migration/invasion. Clinically relevant observations are that its cytotoxic activity was also recorded in primary cells from acute myeloid leukemia (AML) patients. Moreover, both Hemidesmus and piperlongumine showed a selective action toward leukemic stem cell (LSC). Conclusions: Our results indicate the molecular basis of the anti-leukemic effects of Hemidesmus indicus and indentify the mitochondrial pathways, [Ca2+]i, cytodifferentiation and angiogenesis inhibition as crucial actors in its anticancer activity. The ability to selectively hit LSC showed by Hemidesmus and piperlongumine enriched the knowledge of their anti-leukemic activity. On these bases, we conclude that Hemidesmus and piperlongumine can represent a valuable strategy in the anticancer pharmacology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study a novel method MicroJet reactor technology was developed to enable the custom preparation of nanoparticles. rnDanazol/HPMCP HP50 and Gliclazide/Eudragit S100 nanoparticles were used as model systems for the investigation of effects of process parameters and microjet reactor setup on the nanoparticle properties during the microjet reactor construction. rnFollowing the feasibility study of the microjet reactor system, three different nanoparticle formulations were prepared using fenofibrate as model drug. Fenofibrate nanoparticles stabilized with poloxamer 407 (FN), fenofibrate nanoparticles in hydroxypropyl methyl cellulose phthalate (HPMCP) matrix (FHN) and fenofibrate nanoparticles in HPMCP and chitosan matrix (FHCN) were prepared under controlled precipitation using MicroJet reactor technology. Particle sizes of all the nanoparticle formulations were adjusted to 200-250 nm. rnThe changes in the experimental parameters altered the system thermodynamics resulting in the production of nanoparticles between 20-1000 nm (PDI<0.2) with high drug loading efficiencies (96.5% in 20:1 polymer:drug ratio).rnDrug releases from all nanoparticle formulations were fast and complete after 15 minutes both in FaSSIF and FeSSIF medium whereas in mucodhesiveness tests, only FHCN formulation was found to be mucoadhesive. Results of the Caco-2 studies revealed that % dose absorbed values were significantly higher (p<0.01) for FHCN in both cases where FaSSIF and FeSSIF were used as transport buffer.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opposing effects of ondansetron and tramadol on the serotonin pathway have been suggested which possibly increase tramadol consumption and emesis when co-administered. In a randomized, double-blinded study, 179 patients received intravenous ondansetron, metoclopramide, or placebo for emesis prophylaxis. Analgesic regimen consisted of tramadol intraoperative loading and subsequent patient-controlled analgesia. Tramadol consumption and response to antiemetic treatment were compared. Additionally, plasma concentrations of ondansetron and (+)O-demethyltramadol and CYP2D6 genetic variants were analyzed as possible confounders influencing analgesic and antiemetic efficacy. Tramadol consumption did not differ between the groups. Response rate to antiemetic prophylaxis was superior in patients receiving ondansetron (85.0%) compared with placebo (66.7%, P = .046), with no difference to metoclopramide (69.5%). Less vomiting was reported in the immediate postoperative hours in the verum groups (ondansetron 5.0%, metoclopramide 5.1%) compared with placebo (18.6%; P = .01). Whereas plasma concentrations of (+)O-demethyltramadol were significantly correlated to CYP2D6 genotype, no influence was detected for ondansetron. Co-administration of ondansetron neither increased tramadol consumption nor frequency of PONV in this postoperative setting. PERSPECTIVE: Controversial findings were reported for efficacy of tramadol and ondansetron when co-administered due to their opposing serotonergic effects. Co-medication of these drugs neither increased postoperative analgesic consumption nor frequency of emesis in this study enrolling patients recovering from major surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coronary artery disease remains the leading cause of mortality in most industrialized countries, although age-standardized mortality related to coronary artery disease (CAD) has decreased by more than 40% during the last two decades. Coronary atherosclerosis may cause angina pectoris, myocardial infarction, heart failure, arrhythmia, and sudden death. Medical management of atherosclerosis and its manifestation aims at retardation of progression of plaque formation, prevention of plaque rupture, and subsequent events and treatment of symptoms, when these occur as well as treatment of the sequelae of the disease. Revascularization by either percutaneous coronary intervention (PCI) or coronary artery bypass surgery (CABG) is performed as treatment of flow-limiting coronary stenosis to reduce myocardial ischaemia. In high-risk patients with acute coronary syndromes (ACS), a routine invasive strategy with revascularization in most patients provides the best outcome with a significant reduction in death and myocardial infarction compared with an initial conservative strategy. Conversely, the benefit of revascularization among patients with chronic stable CAD has been called into question. This review will provide information that revascularization exerts favourable effects on symptoms, quality of life, exercise capacity, and survival, particularly in those with extensive CAD and documented moderate-to-severe ischaemia. Accordingly, CABG and PCI should be considered a valuable adjunct rather than an alternative to medical therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biologicals are proteins used as drugs. Biologicals target clearly defined molecular structures, being part of established pathogenetic pathways. Therefore, their focused mode of action seems to render them superior to classic small molecular drugs regarding "off-target" adverse drug reactions (ADR). Nevertheless, the increasing use of biologicals for the treatment of different diseases has revealed partially unexpected adverse reactions. The often direct interaction of a biological with the immune system provides a clue to most side effects, which have consequently been subclassified, based on pathogenetic principles, into 5 subtypes named alpha, beta, gamma, delta, and epsilon, reflecting overstimulation (high cytokine values, type alpha), hypersensitivity (type beta), immune deviation (including immunodeficiency, type gamma), cross-reactivity (type delta), and nonimmune mediated side effects (type epsilon). This article presents typical clinical manifestations of these subtypes of ADR to biologicals, proposes general rules for treating them, and provides a scheme for a thorough allergological workup. This approach should help in future handling of these often very efficient drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Use of norepinephrine to increase blood pressure in septic animals has been associated with increased efficiency of hepatic mitochondrial respiration. The aim of this study was to evaluate whether the same effect could be reproduced in isolated hepatic mitochondria after prolonged in vivo exposure to faecal peritonitis. Eighteen pigs were randomized to 27 h of faecal peritonitis and to a control condition (n = 9 each group). At the end, hepatic mitochondria were isolated and incubated for one hour with either norepinephrine or placebo, with and without pretreatment with the specific receptor antagonists prazosin and yohimbine. Mitochondrial state 3 and state 4 respiration were measured for respiratory chain complexes I and II, and state 3 for complex IV using high-resolution respirometry, and respiratory control ratios were calculated. Additionally, skeletal muscle mitochondrial respiration was evaluated after incubation with norepinephrine and dobutamine with and without the respective antagonists (atenolol, propranolol and phentolamine for dobutamine). Faecal peritonitis was characterized by decreasing blood pressure and stroke volume, and maintained systemic oxygen consumption. Neither faecal peritonitis nor any of the drugs or drug combinations had measurable effects on hepatic or skeletal muscle mitochondrial respiration. Norepinephrine did not improve the efficiency of complex I- and complex II-dependent isolated hepatic mitochondrial respiration [respiratory control ratio (RCR) complex I: 5.6 ± 5.3 (placebo) vs. 5.4 ± 4.6 (norepinephrine) in controls and 2.7 ± 2.1 (placebo) vs. 2.9 ± 1.5 (norepinephrine) in septic animals; RCR complex II: 3.5 ± 2.0 (placebo) vs. 3.5 ± 1.8 (norepinephrine) in controls; 2.3 ± 1.6 (placebo) vs. 2.2 ± 1.1 (norepinephrine) in septic animals]. Prolonged faecal peritonitis did not affect either hepatic or skeletal muscle mitochondrial respiration. Subsequent incubation of isolated mitochondria with norepinephrine and dobutamine did not significantly influence their respiration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unexplained differences between classes of antihypertensive drugs in their effectiveness in preventing stroke might be due to class effects on intraindividual variability in blood pressure. We did a systematic review to assess any such effects in randomised controlled trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For centuries the science of pharmacognosy has dominated rational drug development until it was gradually substituted by target-based drug discovery in the last fifty years. Pharmacognosy stems from the different systems of traditional herbal medicine and its "reverse pharmacology" approach has led to the discovery of numerous pharmacologically active molecules and drug leads for humankind. But do botanical drugs also provide effective mixtures? Nature has evolved distinct strategies to modulate biological processes, either by selectively targeting biological macromolecules or by creating molecular promiscuity or polypharmacology (one molecule binds to different targets). Widely claimed to be superior over monosubstances, mixtures of bioactive compounds in botanical drugs allegedly exert synergistic therapeutic effects. Despite evolutionary clues to molecular synergism in nature, sound experimental data are still widely lacking to support this assumption. In this short review, the emerging concept of network pharmacology is highlighted, and the importance of studying ligand-target networks for botanical drugs is emphasized. Furthermore, problems associated with studying mixtures of molecules with distinctly different pharmacodynamic properties are addressed. It is concluded that a better understanding of the polypharmacology and potential network pharmacology of botanical drugs is fundamental in the ongoing rationalization of phytotherapy.