954 resultados para nuclear potential energy surface


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theory of available energy for axisymmetric circulations is presented. The theory is a generalization of the classical theory of available potential energy, in that it accounts for both thermal and angular momentum constraints on the circulation. The generalization relies on the Hamiltonian structure of the (conservative) dynamics, is exact at finite amplitude, and has a local form. Application of the theory is presented for the case of an axisymmetric vortex on an f -plane in the context of the Boussinesq equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rigorous upper bounds are derived that limit the finite-amplitude growth of arbitrary nonzonal disturbances to an unstable baroclinic zonal flow in a continuously stratified, quasi-geostrophic, semi-infinite fluid. Bounds are obtained bath on the depth-integrated eddy potential enstrophy and on the eddy available potential energy (APE) at the ground. The method used to derive the bounds is essentially analogous to that used in Part I of this study for the two-layer model: it relies on the existence of a nonlinear Liapunov (normed) stability theorem, which is a finite-amplitude generalization of the Charney-Stern theorem. As in Part I, the bounds are valid both for conservative (unforced, inviscid) flow, as well as for forced-dissipative flow when the dissipation is proportional to the potential vorticity in the interior, and to the potential temperature at the ground. The character of the results depends on the dimensionless external parameter γ = f02ξ/β0N2H, where ξ is the maximum vertical shear of the zonal wind, H is the density scale height, and the other symbols have their usual meaning. When γ ≫ 1, corresponding to “deep” unstable modes (vertical scale ≈H), the bound on the eddy potential enstrophy is just the total potential enstrophy in the system; but when γ≪1, corresponding to ‘shallow’ unstable modes (vertical scale ≈γH), the eddy potential enstrophy can be bounded well below the total amount available in the system. In neither case can the bound on the eddy APE prevent a complete neutralization of the surface temperature gradient which is in accord with numerical experience. For the special case of the Charney model of baroclinic instability, and in the limit of infinitesimal initial eddy disturbance amplitude, the bound states that the dimensionless eddy potential enstrophy cannot exceed (γ + 1)2/24&gamma2h when γ ≥ 1, or 1/6;&gammah when γ ≤ 1; here h = HN/f0L is the dimensionless scale height and L is the width of the channel. These bounds are very similar to (though of course generally larger than) ad hoc estimates based on baroclinic-adjustment arguments. The possibility of using these kinds of bounds for eddy-amplitude closure in a transient-eddy parameterization scheme is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents single-column model (SCM) simulations of a tropical squall-line case observed during the Coupled Ocean-Atmosphere Response Experiment of the Tropical Ocean/Global Atmosphere Programme. This case-study was part of an international model intercomparison project organized by Working Group 4 ‘Precipitating Convective Cloud Systems’ of the GEWEX (Global Energy and Water-cycle Experiment) Cloud System Study. Eight SCM groups using different deep-convection parametrizations participated in this project. The SCMs were forced by temperature and moisture tendencies that had been computed from a reference cloud-resolving model (CRM) simulation using open boundary conditions. The comparison of the SCM results with the reference CRM simulation provided insight into the ability of current convection and cloud schemes to represent organized convection. The CRM results enabled a detailed evaluation of the SCMs in terms of the thermodynamic structure and the convective mass flux of the system, the latter being closely related to the surface convective precipitation. It is shown that the SCMs could reproduce reasonably well the time evolution of the surface convective and stratiform precipitation, the convective mass flux, and the thermodynamic structure of the squall-line system. The thermodynamic structure simulated by the SCMs depended on how the models partitioned the precipitation between convective and stratiform. However, structural differences persisted in the thermodynamic profiles simulated by the SCMs and the CRM. These differences could be attributed to the fact that the total mass flux used to compute the SCM forcing differed from the convective mass flux. The SCMs could not adequately represent these organized mesoscale circulations and the microphysicallradiative forcing associated with the stratiform region. This issue is generally known as the ‘scale-interaction’ problem that can only be properly addressed in fully three-dimensional simulations. Sensitivity simulations run by several groups showed that the time evolution of the surface convective precipitation was considerably smoothed when the convective closure was based on convective available potential energy instead of moisture convergence. Finally, additional SCM simulations without using a convection parametrization indicated that the impact of a convection parametrization in forced SCM runs was more visible in the moisture profiles than in the temperature profiles because convective transport was particularly important in the moisture budget.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of the mechanical energy budget of the oceans using Lorenz available potential energy (APE) theory is based on knowledge of the adiabatically re-arranged Lorenz reference state of minimum potential energy. The compressible and nonlinear character of the equation of state for seawater has been thought to cause the reference state to be ill-defined, casting doubt on the usefulness of APE theory for investigating ocean energetics under realistic conditions. Using a method based on the volume frequency distribution of parcels as a function of temperature and salinity in the context of the seawater Boussinesq approximation, which we illustrate using climatological data, we show that compressibility effects are in fact minor. The reference state can be regarded as a well defined one-dimensional function of depth, which forms a surface in temperature, salinity and density space between the surface and the bottom of the ocean. For a very small proportion of water masses, this surface can be multivalued and water parcels can have up to two statically stable levels in the reference density profile, of which the shallowest is energetically more accessible. Classifying parcels from the surface to the bottom gives a different reference density profile than classifying in the opposite direction. However, this difference is negligible. We show that the reference state obtained by standard sorting methods is equivalent, though computationally more expensive, to the volume frequency distribution approach. The approach we present can be applied systematically and in a computationally efficient manner to investigate the APE budget of the ocean circulation using models or climatological data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is often assumed on the basis of single-parcel energetics that compressible effects and conversions with internal energy are negligible whenever typical displacements of fluid parcels are small relative to the scale height of the fluid (defined as the ratio of the squared speed of sound over gravitational acceleration). This paper shows that the above approach is flawed, however, and that a correct assessment of compressible effects and internal energy conversions requires considering the energetics of at least two parcels, or more generally, of mass conserving parcel re-arrangements. As a consequence, it is shown that it is the adiabatic lapse rate and its derivative with respect to pressure, rather than the scale height, which controls the relative importance of compressible effects and internal energy conversions when considering the global energy budget of a stratied fluid. Only when mass conservation is properly accounted for is it possible to explain why available internal energy can account for up to 40 percent of the total available potential energy in the oceans. This is considerably larger than the prediction of single-parcel energetics, according to which this number should be no more than about 2 percent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the price effect of EPC ratings on the residential dwelling prices in Wales. It examines the capitalisation of energy efficiency ratings into house prices using two approaches. The first adopts a cross-sectional framework to investigate the effect of EPC band (and EPC rating) on a large sample of dwelling transactions. The second approach is based on a repeat-sales methodology to examine the impact of EPC band and rating on house price appreciation. The results show that, controlling for other price influencing dwelling characteristics, EPC band does affect house prices. This observed influence of EPC on price may not be a result of energy performance alone; the effect may be due to non-energy related benefits associated with certain types, specifications and ages of dwellings or there may be unobserved quality differences unrelated to energy performance such as better quality fittings and materials. An analysis of the private rental segment reveals that, in contrast to the general market, low-EPC rated properties were not traded at a significant discount, suggesting different implicit prices of potential energy savings for landlords and owner-occupiers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the effect of Energy Performance Certificate (EPC) ratings on residential prices in Wales. Drawing on a sample of approximately 192,000 transactions, the capitalisation of energy efficiency ratings into house prices is investigated using two approaches. The first adopts a cross-sectional framework to investigate the effect of EPC rating on price. The second approach applies a repeat-sales methodology to investigate the impact of EPC rating on house price appreciation. Statistically significant positive price premiums are estimated for dwellings in EPC bands A/B (12.8%) and C (3.5%) compared to houses in band D. For dwellings in band E (−3.6%) and F (−6.5%) there are statistically significant discounts. Such effects may not be the result of energy performance alone. In addition to energy cost differences, the price effect may be due to additional benefits of energy efficient features. An analysis of the private rental segment reveals that, in contrast to the general market, low-EPC rated dwellings were not traded at a significant discount. This suggests different implicit prices of potential energy savings for landlords and owner-occupiers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the Lorenz energy cycle over a limited area was applied for three cyclones with different origins and evolutions, where each of them was formed in an important cyclogenetic region near southeastern South America. The synoptic conditions and energetics were analyzed during each system`s life cycle and showed important relationships between their energy cycle and the evolution of their vertical structure. In the case of the weak baroclinic cyclone which formed on Brazil`s south-southeastern coast, the analysis showed that it originated through a midlevel cutoff low with contribution from barotropic instability. Its evolution would indicate potential transition to a hybrid system if the convective activity were stronger. The system that occurred in the La Plata River mouth had features of an oceanic bomb-type cyclogenesis and showed an important contribution from the available potential energy generation term through the latent heat release by the convection. Meanwhile, the system of the southern Argentina coast presented a classical baroclinic development of extratropical cyclogenesis in the energy cycle, from the wave amplification up to the final occlusion of the associated frontal system. These analyses revealed that the development of some cyclones that occur in eastern South America can present different mechanisms that are not related to the classical extratropical cyclogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We performed classical molecular dynamics simulations of the vapor-deposition of alpha-T4 oligomers on the TiO(2)-anatase (101) surface, comparing different sets of charges associated with the atoms of the model. The potential energy surfaces for alpha-T4 and TiO(2) were described by re-parametrizations of the Universal force field with charges given by the charge equilibration (QEq) scheme, or with fixed charges obtained by an ab initio method using the Hirshfeld partition. The two sets of charges lead to completely different results for the interface formation, and for the characteristics of the organic film, with a clearly defined alpha-T4 contact layer in the QEq case, and a more homogeneous molecular distribution when using Hirshfeld charges. The main reason for the discrepancy was found to be the incorrect charge assignment given by QEq to the sulfur and alpha-carbon atoms in thiophenes, and highlight the relevance of long-range interactions in the organization of molecular films. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been increasing interest in the gas-phase reactivity of alkyl nitrates because of their well-known applications as explosives and because of then role in atmospheric and in marine processes This manuscript describes an experimental study by FT-ICR techniques of the gas-phase reactions of OH(-) and F(-) with methyl and ethyl Innate For methyl nitrate, the main reaction channel is found to be an elimination process promoted by abstraction of an a proton from the methyl group. Nucleophilic displacement of nitrate anion through an S(N)2 process at the carbon center Is also found to he an important reaction channel with methyl nitrate In ethyl nitrate, Ruination of NO(3)(-) is greatly enhanced and this is attributed to the ease of an E2-type elimination process promoted by proton abstraction at the beta position of the ethyl group. Theoretical calculations at the MP2/6-311+G(3df,2p)//MP2/6-31+G(d) level of theory ale consistent with the relative importance of the reaction channels and suggest that these reactions proceed through a double well potential The calculations also predict that nucleophilic attack by OH(-) at the nitrogen center (Sn2@N) is energetically the rueful ad pathway but experiments with (18)OH(-) showed no evidence for this channel. Single-point calculations reveal a strong preference for approach to the emboli center and may explain the lack of reactivity at the nitrogen center. Calculations were also carried out or NH(2)(-) and SH(-) to establish the reactivity pattern to provide a better understanding of environmentally relevant nitrate esters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonadiabatic photochemistry of 6-azauracil has been studied by means of the CASPT2//CASSCF protocol and double-zeta plus polarization ANO basis sets. Minimum energy states, transition states, minimum energy paths, and surface intersections have been computed in order to obtain an accurate description of several potential energy hypersurfaces. It is concluded that, after absorption of ultraviolet radiation (248 nm), two main relaxation mechanisms may occur, via which the lowest (3)(pi pi*) state can be populated. The first one takes place via a conical intersection involving the bright (1)(pi pi*) and the lowest (1)(n pi*) states, ((1)pi pi*/(1)n pi*)(CI), from which a low energy singlet-triplet crossing, ((1)n pi*/(3)pi pi*)(STC), connecting the (1)(n pi*) state to the lowest (3)(pi pi*) triplet state is accessible. The second mechanism arises via a singlet-triplet crossing, ((1)pi pi*/(3)n pi*)(STC), leading to a conical intersection in the triplet manifold, ((3)n pi*/(3)pi pi*)(CI), evolving to the lowest (3)(pi pi*) state. Further radiationless decay to the ground state is possible through a (gs/(3)pi pi*)(STC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive systematizations of theoretical and experimental nuclear densities and of optical potential strengths extracted from heavy-ion elastic scattering data analyses at low and intermediate energies are presented. The energy dependence of the nuclear potential is accounted for within a model based on the nonlocal nature of the interaction. The systematics indicates that the heavy-ion nuclear potential can be described in a simple global way through a double-folding shape, which basically depends only on the density of nucleons of the partners in the collision. The possibility of extracting information about the nucleon-nucleon interaction from the heavy-ion potential is investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for standardization of the measured blow count number N-spt into a normalized reference energy value is now fully recognized. The present paper extends the existing theoretical approach using the wave propagation theory as framework and introduces an analysis for large displacements enabling the influence of rod length in the measured N-spt values to be quantified. The study is based on both calibration chamber and field tests. Energy measurements are monitored in two different positions: below the anvil and above the sampler. Both experimental and numerical results demonstrate that whereas the energy delivered into the rod stem is expressed as a ratio of the theoretical free-fall energy of the hammer, the effective sampler energy is a function of the hammer height of fall, sampler permanent penetration, and weight of both hammer and rods. Influence of rod length is twofold and produces opposite effects: wave energy losses increase with increasing rod length and in a long rod composition the gain in potential energy from rod weight is significant and may partially compensate measured energy losses. Based on this revised approach, an analytical solution is proposed to calculate the energy delivered to the sampler and efficiency coefficients are suggested to account for energy losses during the energy transference process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As it follows from the classical analysis, the typical final state of a dark energy universe where a dominant energy condition is violated is a finite-time, sudden future singularity (a big rip). For a number of dark energy universes (including scalar phantom and effective phantom theories as well as specific quintessence models) we demonstrate that quantum effects play the dominant role near a big rip, driving the universe out of a future singularity (or, at least, moderating it). As a consequence, the entropy bounds with quantum corrections become well defined near a big rip. Similarly, black hole mass loss due to phantom accretion is not so dramatic as was expected: masses do not vanish to zero due to the transient character of the phantom evolution stage. Some examples of cosmological evolution for a negative, time-dependent equation of state are also considered with the same conclusions. The application of negative entropy (or negative temperature) occurrence in the phantom thermodynamics is briefly discussed.