926 resultados para nonlinear minisation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An iterative procedure is described for solving nonlinear optimal control problems subject to differential algebraic equations. The procedure iterates on an integrated modified simplified model based problem with parameter updating in such a manner that the correct solution of the original nonlinear problem is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a discrete time dynamic integrated system optimisation and parameter estimation algorithm is applied to the solution of the nonlinear tracking optimal control problem. A version of the algorithm with a linear-quadratic model-based problem is developed and implemented in software. The algorithm implemented is tested with simulation examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel iterative procedure is described for solving nonlinear optimal control problems subject to differential algebraic equations. The procedure iterates on an integrated modified linear quadratic model based problem with parameter updating in such a manner that the correct solution of the original non-linear problem is achieved. The resulting algorithm has a particular advantage in that the solution is achieved without the need to solve the differential algebraic equations . Convergence aspects are discussed and a simulation example is described which illustrates the performance of the technique. 1. Introduction When modelling industrial processes often the resulting equations consist of coupled differential and algebraic equations (DAEs). In many situations these equations are nonlinear and cannot readily be directly reduced to ordinary differential equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes a number of velocity-based moving mesh numerical methods formultidimensional nonlinear time-dependent partial differential equations (PDEs). It consists of a short historical review followed by a detailed description of a recently developed multidimensional moving mesh finite element method based on conservation. Finite element algorithms are derived for both mass-conserving and non mass-conserving problems, and results shown for a number of multidimensional nonlinear test problems, including the second order porous medium equation and the fourth order thin film equation as well as a two-phase problem. Further applications and extensions are referenced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we show how a set of recently derived theoretical results for recurrent neural networks can be applied to the production of an internal model control system for a nonlinear plant. The results include determination of the relative order of a recurrent neural network and invertibility of such a network. A closed loop controller is produced without the need to retrain the neural network plant model. Stability of the closed-loop controller is also demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recurrent neural networks can be used for both the identification and control of nonlinear systems. This paper takes a previously derived set of theoretical results about recurrent neural networks and applies them to the task of providing internal model control for a nonlinear plant. Using the theoretical results, we show how an inverse controller can be produced from a neural network model of the plant, without the need to train an additional network to perform the inverse control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two approaches are presented to calculate the weights for a Dynamic Recurrent Neural Network (DRNN) in order to identify the input-output dynamics of a class of nonlinear systems. The number of states of the identified network is constrained to be the same as the number of states of the plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Almost all research fields in geosciences use numerical models and observations and combine these using data-assimilation techniques. With ever-increasing resolution and complexity, the numerical models tend to be highly nonlinear and also observations become more complicated and their relation to the models more nonlinear. Standard data-assimilation techniques like (ensemble) Kalman filters and variational methods like 4D-Var rely on linearizations and are likely to fail in one way or another. Nonlinear data-assimilation techniques are available, but are only efficient for small-dimensional problems, hampered by the so-called ‘curse of dimensionality’. Here we present a fully nonlinear particle filter that can be applied to higher dimensional problems by exploiting the freedom of the proposal density inherent in particle filtering. The method is illustrated for the three-dimensional Lorenz model using three particles and the much more complex 40-dimensional Lorenz model using 20 particles. By also applying the method to the 1000-dimensional Lorenz model, again using only 20 particles, we demonstrate the strong scale-invariance of the method, leading to the optimistic conjecture that the method is applicable to realistic geophysical problems. Copyright c 2010 Royal Meteorological Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

though discrete cell-based frameworks are now commonly used to simulate a whole range of biological phenomena, it is typically not obvious how the numerous different types of model are related to one another, nor which one is most appropriate in a given context. Here we demonstrate how individual cell movement on the discrete scale modeled using nonlinear force laws can be described by nonlinear diffusion coefficients on the continuum scale. A general relationship between nonlinear force laws and their respective diffusion coefficients is derived in one spatial dimension and, subsequently, a range of particular examples is considered. For each case excellent agreement is observed between numerical solutions of the discrete and corresponding continuum models. Three case studies are considered in which we demonstrate how the derived nonlinear diffusion coefficients can be used to (a) relate different discrete models of cell behavior; (b) derive discrete, intercell force laws from previously posed diffusion coefficients, and (c) describe aggregative behavior in discrete simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A guest/host material system in which the guest molecule is a functionalized, optically nonlinear, chromophore is described. A verification of the crosslinking process, an assessment of the nonlinear properties of the chromophore, using Solvatochromic methods, and an investigation of the electric field induced molecular orientation using second-harmonic generation are included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoinduced poling (PIP) is a new technique which allows the room‐temperature preparation of guest/host polymer films exhibiting significant polar order for nonlinear optical applications. We report a comparison of this novel technique with the conventional electrode poling procedure performed at the glass transition temperature of the polymer using disperse red 1/poly(methylmethacrylate) films. In particular, in situ second harmonic generation measurements show that levels of polar order achieved using these two techniques are similar. In contrast, the stability of the polar order is reduced by up to 20 times in terms of the decay time constant in films prepared using PIP although the stability is very dependent upon the temperature at which the poling was performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general stability theory of nonlinear receding horizon controllers has attracted much attention over the last fifteen years, and many algorithms have been proposed to ensure closed-loop stability. On the other hand many reports exist regarding the use of artificial neural network models in nonlinear receding horizon control. However, little attention has been given to the stability issue of these specific controllers. This paper addresses this problem and proposes to cast the nonlinear receding horizon control based on neural network models within the framework of an existing stabilising algorithm.