948 resultados para nitrogen recycling
Resumo:
The objective of this work was to evaluate the contribution of efficient nitrogen-fixing rhizobial strains to grain yield of new cowpea cultivars, indicated for cultivation in the Brazilian Semiarid region, in the sub-medium of the São Francisco River Valley. Two experiments were set up at the irrigated perimeters of Mandacaru (Juazeiro, state of Bahia) and Bebedouro (Petrolina, state of Pernambuco). The treatments consisted of single inoculation of five rhizobial strains - BR 3267, BR 3262, INPA 03-11B, UFLA 03-84 (Bradyrhizobiumsp.), and BR 3299T(Microvirga vignae) -, besides a treatment with nitrogen and a control without inoculation or N application. The following cowpea cultivars were evaluated: BRS Pujante, BRS Tapaihum, BRS Carijó, and BRS Acauã. A randomized complete block design, with four replicates, was used. Inoculated plants showed similar grain yield to the one observed with plants fertilized with 80 kg ha-1 N. The cultivars BRS Tapaihum and BRS Pujante stood out in grain yield and protein contents when inoculated, showing their potential for cultivation in the sub-medium of the São Francisco River Valley.
Resumo:
Carnitine-free total parenteral nutrition (TPN) is claimed to result in a carnitine deficiency with subsequent impairment of fat oxidation. The present study was designed to evaluate the possible benefit of carnitine supplementation on postoperative fat and nitrogen utilization. Sixteen patients undergoing total esophagectomy were evenly randomized and received TPN without or with L-carnitine supplementation (74 mumol.kg-1.d-1) during 11 postoperative days. On day 11, a 4-h infusion of L-carnitine (125 mumol/kg) was performed in both groups. The effect of supplementation was evaluated by indirect calorimetry, N balance, and repeated measurements of plasma lipids and ketone bodies. Irrespective of continuous or acute supplementation, respiratory quotient and fat oxidation were similarly maintained throughout the study in both groups whereas N balance appeared to be more favorable without carnitine. We conclude that carnitine-supplemented TPN does not improve fat oxidation or promote N utilization in the postoperative phase.
Resumo:
In adipocytes and muscle cells, the GLUT4 glucose transporter isoform is present in intracellular vesicles which continuously recycle between an intracytoplasmic location and the plasma membrane. It is not clear whether the GLUT4-vesicles represent a specific kind of vesicle or resemble typical secretory granules or synaptic-like microvesicles. To approach this question, we expressed GLUT4 in the beta cell line RINm5F and determined its intracellular localization by subcellular fractionation and by immunofluorescence and immunoelectron microscopy. GLUT4 was not found in insulin granules but was associated with a subpopulation of smooth-surface vesicles present in the trans-Golgi region and in vesicular structures adjacent to the plasma membrane. In the trans-Golgi region, GLUT4 did not colocalize with synaptophysin or TGN38. Incubation of the cells with horseradish peroxidase (HRP) led to colocalization of HRP and GLUT4 in some endosomal structures adjacent to the plasma membrane and in occasional trans-Golgi region vesicles. When cells were incubated in the presence of Bafilomycin A, analysis by confocal microscopy revealed GLUT4 in numerous large spots present throughout the cytoplasm, many of which costained for TGN38 and synaptophysin. By immunoelectron microscopy, numerous endosomes were observed which stained strongly for GLUT4. Together our data demonstrate that ectopic expression of GLUT4 in insulinoma cells reveals the presence of a subset of vesicular structures distinct from synaptic-like vesicles and insulin secretory granules. Furthermore, they indicate that GLUT4 constitutively recycles between the plasma membrane and its intracellular location by an endocytic route also taken by TGN38 and synaptophysin.
Resumo:
The objective of this work was to estimate the amounts of N fixed by cowpea in a traditional system and by cowpea and gliricidia in an agroforestry system in the Brazilian Northeast semiarid. The experiment was carried out in a randomized complete block design, in a split-plot arrangement, with four replicates, in the semiarid region of the state of Paraíba, Brazil. Plots consisted of agroforestry and traditional systems (no trees), and split-plots of the three crops planted between the tree rows in the agroforestry system. To estimate N fixation, plant samples were collected in the fourth growth cycle of the perennial species and in the fourth planting cycle of the annual species. In the agroforestry system with buffel grass and prickly-pear cactus, gliricidia plants symbiotically fix high proportions of N (>50%) and contribute with higher N amounts (40 kg ha-1 in leaves) than in the traditional system (11 kg ha-1 in grain and 18 kg ha-1 in straw). In the agroforestry system with maize and cowpea, gliricidia plants do not fix nitrogen, and N input is limited to the fixation by cowpea (2.7 kg ha-1), which is lower than in the traditional system due to its lower biomass production.
Resumo:
Abstract:The objective of this work was to evaluate the effect of nitrogen fertilization on the growth and yield of arracacha (Arracacia xanthorrhiza), as well as on the plant's nutrient uptake, distribution, and removal. The experiment was carried out in a typical Oxisol, with sandy texture. A randomized complete block design was used, with four replicates. The treatments consisted of five N rates: 0, 50, 100, 200, and 400 kg ha-1. The plots were composed of three 8-m-length rows, spaced at 0.60 m between rows and 0.40 m between plants. The plants were harvested after an 8-month cycle. Nitrogen fertilization significantly increased the proportion of N and S accumulated in stems, and of Ca, Mg, Fe, and Mn in leaves. N supply increased Zn distribution to stems and leaves, whereas high N rates increased Cu allocation to stems more than to the rootstock. High N rates increase plant dry matter (DM) production and nutrient uptake and removal, but do not result in the greatest yield due to the greater development of leaves and stems, and to the lower allocation of DM in storage roots.
Resumo:
Abstract:The objective of this work was to evaluate whether a canopy sensor is capable of estimating sugarcane response to N, as well as to propose strategies for handling the data generated by this device during the decision-making process for crop N fertilization. Four N rate-response experiments were carried out, with N rates varying from 0 to 240 kg ha-1. Two evaluations with the canopy sensor were performed when the plants reached average stalk height of 0.3 and 0.5 m. Only two experiments showed stalk yield response to N rates. The canopy sensor was able to identify the crop response to different N rates and the relationship of the nutrient with sugarcane yield. The response index values obtained from the canopy sensor readings were useful in assessing sugarcane response to the applied N rate. Canopy reflectance sensors can help to identify areas responsive to N fertilization and, therefore, improve sugarcane fertilizer management.
Resumo:
Abstract:The objective of this work was to evaluate the effect of grazing intensity on the decomposition of cover crop pasture, dung, and soybean residues, as well as the C and N release rates from these residues in a long-term integrated soybean-beef cattle system under no-tillage. The experiment was initiated in 2001, with soybean cultivated in summer and black oat + Italian ryegrass in winter. The treatments consisted of four sward heights (10, 20, 30, and 40 cm), plus an ungrazed area, as the control. In 2009-2011, residues from pasture, dung, and soybean stems and leaves were placed in nylon-mesh litter bags and allowed to decompose for up to 258 days. With increasing grazing intensity, residual dry matter of the pasture decreased and that of dung increased. Pasture and dung lignin concentrations and C release rates were lower with moderate grazing intensity. C and N release rates from soybean residues are not affected by grazing intensity. The moderate grazing intensity produces higher quality residues, both for pasture and dung. Total C and N release is influenced by the greater residual dry matter produced when pastures were either lightly grazed or ungrazed.
Resumo:
The effect of dissolved nutrients on growth, nutrient content and uptake rates of Chaetomorpha linum in a Mediterranean coastal lagoon (Tancada, Ebro delta, NE Spain) was studied in laboratory experiments. Water was enriched with distinct forms of nitrogen, such as nitrate or ammonium and phosphorus. Enrichment with N, P or with both nutrients resulted in a significant increase in the tissue content of these nutrients. N-enrichment was followed by an increase in chlorophyll content after 4 days of treatment, although the difference was only significant when nitrate was added without P. P-enrichment had no significant effect on chlorophyll content. In all the treatments an increase in biomass was obseved after 10 days. This increase was higher in the N+P treatments. In all the treatments the uptake rate was significantly higher when nutrients were added than in control jars. The uptake rate of N, as ammonium, and P were significantly higher when they were added alone while that of N as nitrate was higher in the N+P treatment. In the P-enriched cultures, the final P-content of macroalgal tissues was ten-fold that of the initial tissue concentrations, thereby indicating luxury P-uptake. Moreover, at the end of the incubation the N:P ratio increased to 80, showing that P rather than N was the limiting factor for C. linum in the Tancada lagoon. The relatively high availability of N is related to the N inputs from rice fields that surround the lagoon and to P binding in sediments.
Resumo:
Polarized tip growth is a fundamental cellular process in many eukaryotic organisms, mediating growth of neuronal axons and dendrites or fungal hyphae. In plants, pollen and root hairs are cellular model systems for analysing tip growth. Cell growth depends on membrane traffic. The regulation of this membrane traffic is largely unknown for tip-growing cells, in contrast to cells exhibiting intercalary growth. Here we show that in Arabidopsis, GBF1-related exchange factors for the ARF GTPases (ARF GEFs) GNOM and GNL2 play essential roles in polar tip growth of root hairs and pollen, respectively. When expressed from the same promoter, GNL2 (in contrast to the early-secretory ARF GEF GNL1) is able to replace GNOM in polar recycling of the auxin efflux regulator PIN1 from endosomes to the basal plasma membrane in non-tip growing cells. Thus, polar recycling facilitates polar tip growth, and GNL2 seems to have evolved to meet the specific requirement of fast-growing pollen in higher plants.
Resumo:
Charcot-Marie-Tooth neuropathy (CMT) represents a heterogenous group of inherited disorders of the peripheral nervous system. One form of autosomal recessive demyelinating CMT (CMT4C, 5q32) is caused by mutations in the gene encoding KIAA1985, a protein of so far unknown function. Here we show that KIAA1985 is exclusively expressed in Schwann cells. KIAA1985 is tethered to cellular membranes through an N-terminal myristic acid anchor and localizes to the perinuclear recycling compartment. A search for proteins that interact with KIAA1985 identified the small GTPase Rab11, a key regulator of recycling endosome functions. CMT4C-related missense mutations disrupt the KIAA1985/Rab11 interaction. Protein binding studies indicate that KIAA1985 functions as a Rab11 effector, as it interacts only with active forms of Rab11 (WT and Q70L) and does not interact with the GDP locked mutant (S25N). Consistent with a function of Rab11 in Schwann cell myelination, myelin formation was strongly impaired when dorsal root ganglion neurons were co-cultured with Schwann cells infected with Rab11 S25N. Our data indicate that the KIAA1985/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.
Resumo:
Field experiments were conducted at two locations during two growing seasons in the Ebro Valley (Spain), to evaluate the effects of N fertilization on yield and quality of Mediterranean-type wheat in irrigated conditions. Seven N treatments and a control were investigated. The average grain yields ranged from 2117 to 5551 kg ha-1 depending on the year and location. Grain protein ranged from 14.25 to 16.9%, and other quality parameters such as the dough strength (W) also varied with year and location, confirming the suitability of Mediterranean-type wheat and the climate for the production of good bread-making quality wheat. However, grain yields are normally low and both yields and quality can be greatly affected by the variability of this type of climate, even under irrigation. Under these conditions, grain yield increases were mainly due to an increase in the number of grains per m2 without a reduction in the N content per spike, suggesting that N in the grain was not source-limited, possibly due to the lower grain yields and relatively high soil nitrate concentrations. In soils with lower initial soil NO-3N contents, better grain yields could be achieved by applying a N fertilizer rate of about 100 kg N ha-1, whereas in soils with high initial NO-3N contents, no N or a maximum rate of 50 kg N ha-1 is needed to obtain a good grain quality, showing the possibility of producing high-quality wheat with a low amount of N fertilizer and thus increasing the sustainability of the cropping system.
Resumo:
Pig slurry is a valuable nutrient resource but constitutes a waste disposal problem in areas of high animal density. In the semiarid area of Pla d’Urgell, in the Ebro Valley, North-East Spain, irrigated crops receive large amounts of nutrients in the form of manure and mineral fertilizers. We studied the effect of pig slurry and additional side-dress mineral fertilizers on irrigated wheat, Triticum aestivum L., on a coarse loam soil, with high soil P and K levels. Yields increased by 62.3% when using pig slurry. The application of ammonium sulfate nitrate sidedress did not significantly increase wheat production. The average apparent recoveries were higher for potassium (88.7%) than for nitrogen (51.3%) and phosphorus (36.3%). Greater amounts of soil NO3-N were measured over the four growing seasons, which was consistent with the amount of N applied. Macronutrient and micronutrient uptake was significant higher for pig slurry treatments, but only small differences were found between the pig slurry and pig slurry plus ammonium sulfate nitrate treatments. The unfertilized treatment showed significantly lower soil P, K, Cu and Zn content than pig slurry treatments; 34%, 21%, 34%, and 26% respectively. These findings could be used to develop a nutrient management plan based on knowledge of soil test results and crop nutrient removal. This could help to improve the use of pig slurry and mineral fertilizers on limited available land areas and prevent the accumulation of potentially toxic elements in soils and the export of nutrients through agricultural drainage.
Resumo:
In the present study, a 2-year N rate response experiment was conducted in different fields to monitor NO3-N soil profiles, N accumulation by the crop and final crop performance, in order to assess if soil NO3-N at pre-sidedressing (Pre-Sidedress Soil Nitrate Test, PSNT) is a reliable indicator for soil N availability for corn in the irrigated area served by canal d’Urgell (Lleida, Spain), and if the test can be used to separate responsive fields from non-responsive fields to sidedress N fertilizer applications. Preliminary soil N availability (N sidedress fertilizer rate + PSNT) critical levels to identify fields that need supplementary N fertilizer applications were established at ca. 300 and 210 kg NO3-N·ha–1, for PSNTrooting–zone and PSNT0–30 cm, respectively (for a yield goal of 14 t grain·ha–1).
Resumo:
Wheat yield and grain nitrogen concentration (GNC; mg N/g grain) are frequently negatively correlated. In most growing conditions, this is mainly due to a feedback process between GNC and the number of grains/m2. In Mediterranean conditions, breeders may have produced cultivars with conservative grain set. The present study aimed at clarifying the main physiological determinants of grain nitrogen accumulation (GNA) in Mediterranean wheat and to analyse how breeding has affected them. Five field experiments were carried out in north-eastern Spain in the 2005/06 and 2006/ 07 growing seasons with three cultivars released at different times and an advanced line. Depending on the experiment, source-sink ratios during grain filling were altered by reducing grain number/m2 either through pre-anthesis shading (unshaded control or 0.75 shading only between jointing and anthesis) or by directly trimming the spikes after anthesis and before the onset of the effective grain filling period (un-trimmed control or spikes halved 7–10 days after anthesis). Grain nitrogen content (GN content ; mg N/grain) decreased with the year of release of the genotypes. As the number of grains/m2 was also increased by breeding there was a clear dilution effect on the amount of nitrogen allocated to each grain. However, the increase in GN content in old genotypes did not compensate for the loss in grain nitrogen yield (GNY) due to the lower number of grains/m2. GN content of all genotypes increased (increases ranged from 0.13 to 0.40 mg N/grain, depending on experiment and genotype) in response to the post-anthesis spike trimming or pre-anthesis shading. The degree of source-limitation for GNA increased with the year of release of the genotypes (and thus with increases in grain number/m2) from 0.22 (mean of the four manipulative experiments) in the oldest cultivar to 0.51 (mean of the four manipulative experiments) in the most modern line. It was found that final GN content depended strongly on the source-sink ratio established at anthesis between the number of grains set and the amount of nitrogen absorbed at this stage. Thus, Mediterranean wheat breeding that improved yield through increases in grain number/m2 reduced the GN content by diluting a rather limited source of nitrogen into more grains. This dilution effect produced by breeding was further confirmed by the reversal effect produced by grain number/m2 reductions due to either pre-anthesis shading or post-anthesis spike trimming.