950 resultados para natural bond orbitals approach
Resumo:
Main objective of the game is to increase the coping capacity of players and familiarise them with the Integrated Disaster Reduction Approach. The game is intended to prepare for and introduce the players to a subsequent Learning for Sustainability capacity building workshop for community leaders. The game represents a typical emergency situation resulting from a natural disaster. Before and after the event, adequate measures help to prevent or minimise potential damages. Once a disaster has occurred, concerted actions and immediate measures need to be taken to rescue as much as possible (human lives, livestock, material) and safeguard the village against further damage and losses. In the course of the game, each playing team can proof its knowledge on adequate measures that have to be taken in order to avoid or reduce losses related to natural disasters. Such measures relate to assessment and monitoring of risks, prevention and mitigation measures, preparedness and response as well as recovery and reconstruction.
Resumo:
Eight surface observation sites providing quasi-continuous measurements of atmospheric methane mixingratios have been operated since the mid-2000’s in Siberia. For the first time in a single work, we assimilate 1 year of these in situ observations in an atmospheric inversion. Our objective is to quantify methane surface fluxes from anthropogenic and wetland sources at the mesoscale in the Siberian lowlands for the year 2010. To do so, we first inquire about the way the inversion uses the observations and the way the fluxes are constrained by the observation sites. As atmospheric inver- sions at the mesoscale suffer from mis-quantified sources of uncertainties, we follow recent innovations in inversion techniques and use a new inversion approach which quantifies the uncertainties more objectively than the previous inversion systems. We find that, due to errors in the representation of the atmospheric transport and redundant pieces of information, only one observation every few days is found valuable by the inversion. The remaining high-resolution quasi-continuous signal is representative of very local emission patterns difficult to analyse with a mesoscale system. An analysis of the use of information by the inversion also reveals that the observation sites constrain methane emissions within a radius of 500 km. More observation sites than the ones currently in operation are then necessary to constrain the whole Siberian lowlands. Still, the fluxes within the constrained areas are quantified with objectified uncertainties. Finally, the tolerance intervals for posterior methane fluxes are of roughly 20 % (resp. 50 %) of the fluxes for anthropogenic (resp. wetland) sources. About 50–70 % of Siberian lowlands emissions are constrained by the inversion on average on an annual basis. Extrapolating the figures on the constrained areas to the whole Siberian lowlands, we find a regional methane budget of 5–28 TgCH4 for the year 2010, i.e. 1–5 % of the global methane emissions. As very few in situ observations are available in the region of interest, observations of methane total columns from the Greenhouse Gas Observing SATellite (GOSAT) are tentatively used for the evaluation of the inversion results, but they exhibit only a marginal signal from the fluxes within the region of interest.
Resumo:
Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. (1) In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases.
Resumo:
Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. (1) In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases.
Resumo:
The focal point of this paper is to propose and analyze a P 0 discontinuous Galerkin (DG) formulation for image denoising. The scheme is based on a total variation approach which has been applied successfully in previous papers on image processing. The main idea of the new scheme is to model the restoration process in terms of a discrete energy minimization problem and to derive a corresponding DG variational formulation. Furthermore, we will prove that the method exhibits a unique solution and that a natural maximum principle holds. In addition, a number of examples illustrate the effectiveness of the method.
Resumo:
Today, more than 1000 World Heritage (WH) sites are inscribed on UNESCO’s list, 228 of which are natural and mixed heritage sites. Once focused primarily on conservation, World Natural Heritage (WNH) sites are increasingly seen as promoters of sustainable regional development. Sustainability-oriented regions, it is assumed, are safeguards for conservation and positively influence local conservation goals. Within UNESCO, discussions regarding the integration of sustainable development in official policies have recently gained momentum. In this article, we investigate the extent to which WNH sites trigger sustainability-oriented approaches in surrounding regions, and how such approaches in turn influence the WNH site and its protection. The results of the study are on the one hand based on a global survey with more than 60% of the WNH sites listed in 2011, and on the other hand on a complementary literature research. Furthermore, we analyze the policy framework necessary to support WNH sites in this endeavor. We conclude that a regional approach to WNH management is necessary to ensure that WNH sites support sustainable regional development effectively, but that the core focus of WNH status must remain environmental conservation.
Resumo:
Purpose. To examine the association between living in proximity to Toxics Release Inventory (TRI) facilities and the incidence of childhood cancer in the State of Texas. ^ Design. This is a secondary data analysis utilizing the publicly available Toxics release inventory (TRI), maintained by the U.S. Environmental protection agency that lists the facilities that release any of the 650 TRI chemicals. Total childhood cancer cases and childhood cancer rate (age 0-14 years) by county, for the years 1995-2003 were used from the Texas cancer registry, available at the Texas department of State Health Services website. Setting: This study was limited to the children population of the State of Texas. ^ Method. Analysis was done using Stata version 9 and SPSS version 15.0. Satscan was used for geographical spatial clustering of childhood cancer cases based on county centroids using the Poisson clustering algorithm which adjusts for population density. Pictorial maps were created using MapInfo professional version 8.0. ^ Results. One hundred and twenty five counties had no TRI facilities in their region, while 129 facilities had at least one TRI facility. An increasing trend for number of facilities and total disposal was observed except for the highest category based on cancer rate quartiles. Linear regression analysis using log transformation for number of facilities and total disposal in predicting cancer rates was computed, however both these variables were not found to be significant predictors. Seven significant geographical spatial clusters of counties for high childhood cancer rates (p<0.05) were indicated. Binomial logistic regression by categorizing the cancer rate in to two groups (<=150 and >150) indicated an odds ratio of 1.58 (CI 1.127, 2.222) for the natural log of number of facilities. ^ Conclusion. We have used a unique methodology by combining GIS and spatial clustering techniques with existing statistical approaches in examining the association between living in proximity to TRI facilities and the incidence of childhood cancer in the State of Texas. Although a concrete association was not indicated, further studies are required examining specific TRI chemicals. Use of this information can enable the researchers and public to identify potential concerns, gain a better understanding of potential risks, and work with industry and government to reduce toxic chemical use, disposal or other releases and the risks associated with them. TRI data, in conjunction with other information, can be used as a starting point in evaluating exposures and risks. ^
Resumo:
My dissertation focuses on developing methods for gene-gene/environment interactions and imprinting effect detections for human complex diseases and quantitative traits. It includes three sections: (1) generalizing the Natural and Orthogonal interaction (NOIA) model for the coding technique originally developed for gene-gene (GxG) interaction and also to reduced models; (2) developing a novel statistical approach that allows for modeling gene-environment (GxE) interactions influencing disease risk, and (3) developing a statistical approach for modeling genetic variants displaying parent-of-origin effects (POEs), such as imprinting. In the past decade, genetic researchers have identified a large number of causal variants for human genetic diseases and traits by single-locus analysis, and interaction has now become a hot topic in the effort to search for the complex network between multiple genes or environmental exposures contributing to the outcome. Epistasis, also known as gene-gene interaction is the departure from additive genetic effects from several genes to a trait, which means that the same alleles of one gene could display different genetic effects under different genetic backgrounds. In this study, we propose to implement the NOIA model for association studies along with interaction for human complex traits and diseases. We compare the performance of the new statistical models we developed and the usual functional model by both simulation study and real data analysis. Both simulation and real data analysis revealed higher power of the NOIA GxG interaction model for detecting both main genetic effects and interaction effects. Through application on a melanoma dataset, we confirmed the previously identified significant regions for melanoma risk at 15q13.1, 16q24.3 and 9p21.3. We also identified potential interactions with these significant regions that contribute to melanoma risk. Based on the NOIA model, we developed a novel statistical approach that allows us to model effects from a genetic factor and binary environmental exposure that are jointly influencing disease risk. Both simulation and real data analyses revealed higher power of the NOIA model for detecting both main genetic effects and interaction effects for both quantitative and binary traits. We also found that estimates of the parameters from logistic regression for binary traits are no longer statistically uncorrelated under the alternative model when there is an association. Applying our novel approach to a lung cancer dataset, we confirmed four SNPs in 5p15 and 15q25 region to be significantly associated with lung cancer risk in Caucasians population: rs2736100, rs402710, rs16969968 and rs8034191. We also validated that rs16969968 and rs8034191 in 15q25 region are significantly interacting with smoking in Caucasian population. Our approach identified the potential interactions of SNP rs2256543 in 6p21 with smoking on contributing to lung cancer risk. Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting affects several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we propose a NOIA framework for a single locus association study that estimates both main allelic effects and POEs. We develop statistical (Stat-POE) and functional (Func-POE) models, and demonstrate conditions for orthogonality of the Stat-POE model. We conducted simulations for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits.
Resumo:
A morphometric analysis was performed for the late Middle Miocene bivalve species lineage of Polititapes tricuspis (Eichwald, 1829) (Veneridae: Tapetini). Specimens from various localities grouped into two stratigraphically successive biozones, i.e. the upper Ervilia Zone and the Sarmatimactra Zone, were investigated using a multi-method approach. A Generalized Procrustes Analysis was computed for fifteen landmarks, covering characteristics of the hinge, muscle scars, and pallial line. The shell outline was separately quantified by applying the Fast Fourier Transform, which redraws the outline by fitting in a combination of trigonometric curves. Shell size was calculated as centroid size from the landmark configuration. Shell thickness, as not covered by either analysis, was additionally measured at the centroid. The analyses showed significant phenotypic differentiation between specimens from the two biozones. The bivalves become distinctly larger and thicker over geological time and develop circular shells with stronger cardinal teeth and a deeper pallial sinus. Data on the paleoenvironmental changes in the late Middle Miocene Central Paratethys Sea suggest the phenotypic shifts to be functional adaptations. The typical habitats for Polititapes changed to extensive, very shallow shores exposed to high wave action and tidal activity. Caused by the growing need for higher mechanical stability, the bivalves produced larger and thicker shells with stronger cardinal teeth. The latter are additionally shifted towards the hinge center to compensate for the lacking lateral teeth and improve stability. The deepening pallial sinus is related to a deeper burrowing habit, which is considered to impede being washed out in the new high-energy settings.
Resumo:
The growing field of ocean acidification research is concerned with the investigation of organism responses to increasing pCO2 values. One important approach in this context is culture work using seawater with adjusted CO2 levels. As aqueous pCO2 is difficult to measure directly in small-scale experiments, it is generally calculated from two other measured parameters of the carbonate system (often AT, CT or pH). Unfortunately, the overall uncertainties of measured and subsequently calculated values are often unknown. Especially under high pCO2, this can become a severe problem with respect to the interpretation of physiological and ecological data. In the few datasets from ocean acidification research where all three of these parameters were measured, pCO2 values calculated from AT and CT are typically about 30% lower (i.e. ~300 µatm at a target pCO2 of 1000 µatm) than those calculated from AT and pH or CT and pH. This study presents and discusses these discrepancies as well as likely consequences for the ocean acidification community. Until this problem is solved, one has to consider that calculated parameters of the carbonate system (e.g. pCO2, calcite saturation state) may not be comparable between studies, and that this may have important implications for the interpretation of CO2 perturbation experiments.
Liver proteome profiling of juvenile Chinese sturgeon (Acipenser sinensis) using GeLC-MS/MS approach
Resumo:
Chinese sturgeon (Acipenser sinensis), mainly distributed in the Yangtze River, has been listed as a grade I protected animal in China because of a dramatic decline in population owing to loss of natural habitat for reproduction and interference by human activities. Understanding the proteome profile of Chinese sturgeon liver would provide an invaluable resource for protecting and increasing the stocks of this species. In this study, we have analyzed proteome profiles of juvenile Chinese sturgeon liver using a one-dimensional gel electrophoresis coupled to LC-MS/MS approach. A total of 1059 proteins and 2084 peptides were identified. The liver proteome was found to be associated with diverse biological processes, cellular components and molecular functions. The proteome profile identified a variety of significant pathways including carbohydrate metabolism, fatty acid metabolism and amino acid metabolism pathways. It also established a network for protein biosynthesis, folding and catabolic processes. The proteome profile established in this study can be used for understanding the development of Chinese sturgeon and studying the molecular mechanisms of action under environmental or chemical stress, providing very useful omics information that can be applied to preserve this species.
Resumo:
Maps of continental-scale land cover are utilized by a range of diverse users but whilst a range of products exist that describe present and recent land cover in Europe, there are currently no datasets that describe past variations over long time-scales. User groups with an interest in past land cover include the climate modelling community, socio-ecological historians and earth system scientists. Europe is one of the continents with the longest histories of land conversion from forest to farmland, thus understanding land cover change in this area is globally significant. This study applies the pseudobiomization method (PBM) to 982 pollen records from across Europe, taken from the European Pollen Database (EPD) to produce a first synthesis of pan-European land cover change for the period 9000 BP to present, in contiguous 200 year time intervals. The PBM transforms pollen proportions from each site to one of eight land cover classes (LCCs) that are directly comparable to the CORINE land cover classification. The proportion of LCCs represented in each time window provides a spatially aggregated record of land cover change for temperate and northern Europe, and for a series of case study regions (western France, the western Alps, and the Czech Republic and Slovakia). At the European scale, the impact of Neolithic food producing economies appear to be detectable from 6000 BP through reduction in broad-leaf forests resulting from human land use activities such as forest clearance. Total forest cover at a pan-European scale moved outside the range of previous background variability from 4000 BP onwards. From 2200 BP land cover change intensified, and the broad pattern of land cover for preindustrial Europe was established by 1000 BP. Recognizing the timing of anthropogenic land cover change in Europe will further the understanding of land cover-climate interactions, and the origins of the modern cultural landscape.
Resumo:
The shells of marine mollusks are widely used archives of past climate and ocean chemistry. Whilst the measurement of mollusk delta 18O to develop records of past climate change is a commonly used approach, it has proven challenging to develop reliable independent paleothermometers that can be used to deconvolve the contributions of temperature and fluid composition on molluscan oxygen isotope compositions. Here we investigate the temperature dependence of 13C-18O bond abundance, denoted by the measured parameter Delta 47, in shell carbonates of bivalve mollusks and assess its potential to be a useful paleothermometer. We report measurements on cultured specimens spanning a range in water temperatures of 5 to 25 °C, and field collected specimens spanning a range of -1 to 29 °C. In addition we investigate the potential influence of carbonate saturation state on bivalve stable isotope compositions by making measurements on both calcitic and aragonitic specimens that have been cultured in seawater that is either supersaturated or undersaturated with respect to aragonite. We find a robust relationship between Delta 47 and growth temperature. We also find that the slope of a linear regression through all the Delta 47 data for bivalves plotted against seawater temperature is significantly shallower than previously published inorganic and biogenic carbonate calibration studies produced in our laboratory and go on to discuss the possible sources of this difference. We find that changing seawater saturation state does not have significant effect on the Delta 47 of bivalve shell carbonate in two taxa that we examined, and we do not observe significant differences between Delta 47-temperature relationships between calcitic and aragonitic taxa.
Resumo:
Marine yeasts play an important role in biodegradation and nutrient cycling and are often associated with marine flora and fauna. They show maximum growth at pH levels lower than present-day seawater pH. Thus, contrary to many other marine organisms, they may actually profit from ocean acidification. Hence, we conducted a microcosm study, incubating natural seawater from the North Sea at present-day pH (8.10) and two near-future pH levels (7.81 and 7.67). Yeasts were isolated from the initial seawater sample and after 2 and 4 weeks of incubation. Isolates were classified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and representative isolates were identified by partial sequencing of the large subunit rRNA gene. From the initial seawater sample, we predominantly isolated a yeast-like filamentous fungus related to Aureobasidium pullulans, Cryptococcus sp., Candida sake, and various cold-adapted yeasts. After incubation, we found more different yeast species at near-future pH levels than at present-day pH. Yeasts reacting to low pH were related to Leucosporidium scottii, Rhodotorula mucilaginosa, Cryptococcus sp., and Debaryomyces hansenii. Our results suggest that these yeasts will benefit from seawater pH reductions and give a first indication that the importance of yeasts will increase in a more acidic ocean.
Resumo:
As the atmospheric CO2 concentration rises, more CO2 will dissolve in the oceans, leading to a reduction in pH. Effects of ocean acidification on bacterial communities have mainly been studied in biologically complex systems, in which indirect effects, mediated through food web interactions, come into play. These approaches come close to nature but suffer from low replication and neglect seasonality. To comprehensively investigate direct pH effects, we conducted highly-replicated laboratory acidification experiments with the natural bacterial community from Helgoland Roads (North Sea). Seasonal variability was accounted for by repeating the experiment four times (spring, summer, autumn, winter). Three dilution approaches were used to select for different ecological strategies, i.e. fast-growing or low-nutrient adapted bacteria. The pH levels investigated were in situ seawater pH (8.15-8.22), pH 7.82 and pH 7.67, representing the present-day situation and two acidification scenarios projected for the North Sea for the year 2100. In all seasons, both automated ribosomal intergenic spacer analysis and 16S ribosomal amplicon pyrosequencing revealed pH-dependent community shifts for two of the dilution approaches. Bacteria susceptible to changes in pH were different members of Gammaproteobacteria, Flavobacteriaceae, Rhodobacteraceae, Campylobacteraceae and further less abundant groups. Their specific response to reduced pH was often context-dependent. Bacterial abundance was not influenced by pH. Our findings suggest that already moderate changes in pH have the potential to cause compositional shifts, depending on the community assembly and environmental factors. By identifying pH-susceptible groups, this study provides insights for more directed, in-depth community analyses in large-scale and long-term experiments.