859 resultados para model-based reasoning
Resumo:
Knitwear design is a creative activity that is hard to automate using the computer. The production of the associated knitting pattern, however, is repetitive, time-consuming and error-prone, calling for automation. Our objectives are two-fold: to facilitate the design and to ease the burden of calculations and checks in pattern production. We conduct a feasibility study for applying case-based reasoning in knitwear design: we describe appropriate methods and show their application.
Resumo:
Artificial Immune Systems are well suited to the problem of using a profile representation of an individual’s or a group’s interests to evaluate documents. Nootropia is a user profiling model that exhibits similarities to models of the immune system that have been developed in the context of autopoietic theory. It uses a self-organising term network that can represent a user’s multiple interests and can adapt to both short-term variations and substantial changes in them. This allows Nootropia to drift, constantly following changes in the user’s multiple interests, and, thus, to become structurally coupled to the user.
Resumo:
Tissue engineering of skin based on collagen:PCL biocomposites using a designed co-culture system is reported. The collagen:PCL biocomposites having collagen:PCL (w/w) ratios of 1:4, 1:8, and 1:20 have been proven to be biocompatible materials to support both adult normal human epidermal Keratinocyte (NHEK) and mouse 3T3 fibroblast growth in cell culture, respectively, by Dai, Coombes, et al. in 2004. Films of collagen:PCL biocomposites were prepared using non-crosslinking method by impregnation of lyophilized collagen mats with PCL/dichloromethane solutions followed by solvent evaporation. To mimic the dermal/epidermal structure of skin, the 1:20 collagen:PCL biocomposites were selected for a feasibility study of a designed co-culture technique that would subsequently be used for preparing fibroblast/biocomposite/keratinocyte skin models. A 55.3% increase in cell number was measured in the designed co-culture system when fibroblasts were seeded on both sides of a biocomposite film compared with cell culture on one surface of the biocomposite in the feasibility study. The co-culture of human keratinocytes and 3T3 fibroblasts on each side of the membrane was therefore studied using the same co-culture system by growing keratinocytes on the top surface of membrane for 3 days and 3T3 fibroblasts underneath the membrane for 6 days. Scanning electron microscopy (SEM) and immunohistochemistry assay revealed good cell attachment and proliferation of both human keratinocytes and 3T3 fibroblasts with these two types of cells isolated well on each side of the membrane. Using a modified co-culture technique, a co-cultured skin model presenting a confluent epidermal sheet on one side of the biocomposite film and fibroblasts populated on the other side of the film was developed successfully in co-culture system for 28 days under investigations by SEM and immunohistochemistry assay. Thus, the design of a co-culture system based on 1:20 (w/w) collagen:PCL biocomposite membranes for preparation of a bi-layered skin model with differentiated epidermal sheet was proven in principle. The approach to skin modeling reported here may find application in tissue engineering and screening of new pharmaceuticals. © 2005 Elsevier Inc. All rights reserved.
Resumo:
The method of case-based reasoning for a solution of problems of real-time diagnostics and forecasting in intelligent decision support systems (IDSS) is considered. Special attention is drawn to case library structure for real-time IDSS (RT IDSS) and algorithm of k-nearest neighbors type. This work was supported by RFBR.
Resumo:
Methods of analogous reasoning and case-based reasoning for intelligent decision support systems are considered. Special attention is drawn to methods based on a structural analogy that take the context into account. This work was supported by RFBR (projects 02-07-90042, 05-07-90232).
Resumo:
The paper deals with a problem of intelligent system’s design for complex environments. There is discussed a possibility to integrate several technologies into one basic structure that could form a kernel of an autonomous intelligent robotic system. One alternative structure is proposed in order to form a basis of an intelligent system that would be able to operate in complex environments. The proposed structure is very flexible because of features that allow adapting via learning and adjustment of the used knowledge. Therefore, the proposed structure may be used in environments with stochastic features such as hardly predictable events or elements. The basic elements of the proposed structure have found their implementation in software system and experimental robotic system. The software system as well as the robotic system has been used for experimentation in order to validate the proposed structure - its functionality, flexibility and reliability. Both of them are presented in the paper. The basic features of each system are presented as well. The most important results of experiments are outlined and discussed at the end of the paper. Some possible directions of further research are also sketched at the end of the paper.
Resumo:
A Case-Based Reasoning (CBR) tool is software that can be used to develop several applications that require cased-based reasoning methodology. CBR shells are kind of application generators with graphical user interface. They can be used by non-programmer users but the extension or integration of new components in these tools is not possible. In this paper we analyzed three CBR object-oriented framework development environments CBR*Tools, CAT-CBR, and JColibri. These frameworks work as open software development environment and facilitate the reuse of their design as well as implementations.
Resumo:
There have been multifarious approaches in building expert knowledge in medical or engineering field through expert system, case-based reasoning, model-based reasoning and also a large-scale knowledge-based system. The intriguing factors with these approaches are mainly the choices of reasoning mechanism, ontology, knowledge representation, elicitation and modeling. In our study, we argue that the knowledge construction through hypermedia-based community channel is an effective approach in constructing expert’s knowledge. We define that the knowledge can be represented as in the simplest form such as stories to the most complex ones such as on-the-job type of experiences. The current approaches of encoding experiences require expert’s knowledge to be acquired and represented in rules, cases or causal model. We differentiate the two types of knowledge which are the content knowledge and socially-derivable knowledge. The latter is described as knowledge that is earned through social interaction. Intelligent Conversational Channel is the system that supports the building and sharing on this type of knowledge.
Resumo:
Knitwear design is a creative activity that is hard to automate using the computer. The production of the associated knitting pattern, however, is repetitive, time-consuming and error-prone, calling for automation. Our objectives are two-fold: To facilitate the design and to ease the burden of calculations and checks in pattern production. We conduct a feasibility study for applying case-based reasoning in knitwear design: We describe appropriate methods and show how they can be implemented. © Cranfield University 2009.
Resumo:
Design verification in the digital domain, using model-based principles, is a key research objective to address the industrial requirement for reduced physical testing and prototyping. For complex assemblies, the verification of design and the associated production methods is currently fragmented, prolonged and sub-optimal, as it uses digital and physical verification stages that are deployed in a sequential manner using multiple systems. This paper describes a novel, hybrid design verification methodology that integrates model-based variability analysis with measurement data of assemblies, in order to reduce simulation uncertainty and allow early design verification from the perspective of satisfying key assembly criteria.
Resumo:
2000 Mathematics Subject Classification: 62E16,62F15, 62H12, 62M20.
Resumo:
Case-based Reasoning's (CBR) origins were stimulated by a desire to understand how people remember information and are in turn reminded of information, and that subsequently it was recognized that people commonly solve problems by remembering how they solved similar problems in the past. Thus CBR became an appropriate way to find out the most suitable solution method for a new problem based on the old methods for the same or even similar problems. The research highlights how to use CBR to aid biologists in finding the best method to cryo preserve algae. The study found CBR could be used successfully to find the similarity percentage between the new algae and old cases in the case base. The prediction result showed approximately 93.75% accuracy, which proves the CBR system can offer appropriate recommendations for most situations. © 2011 IEEE.
Resumo:
Unmanned Aerial Vehicles (UAVs) may develop cracks, erosion, delamination or other damages due to aging, fatigue or extreme loads. Identifying these damages is critical for the safe and reliable operation of the systems. ^ Structural Health Monitoring (SHM) is capable of determining the conditions of systems automatically and continually through processing and interpreting the data collected from a network of sensors embedded into the systems. With the desired awareness of the systems’ health conditions, SHM can greatly reduce operational cost and speed up maintenance processes. ^ The purpose of this study is to develop an effective, low-cost, flexible and fault tolerant structural health monitoring system. The proposed Index Based Reasoning (IBR) system started as a simple look-up-table based diagnostic system. Later, Fast Fourier Transformation analysis and neural network diagnosis with self-learning capabilities were added. The current version is capable of classifying different health conditions with the learned characteristic patterns, after training with the sensory data acquired from the operating system under different status. ^ The proposed IBR systems are hierarchy and distributed networks deployed into systems to monitor their health conditions. Each IBR node processes the sensory data to extract the features of the signal. Classifying tools are then used to evaluate the local conditions with health index (HI) values. The HI values will be carried to other IBR nodes in the next level of the structured network. The overall health condition of the system can be obtained by evaluating all the local health conditions. ^ The performance of IBR systems has been evaluated by both simulation and experimental studies. The IBR system has been proven successful on simulated cases of a turbojet engine, a high displacement actuator, and a quad rotor helicopter. For its application on experimental data of a four rotor helicopter, IBR also performed acceptably accurate. The proposed IBR system is a perfect fit for the low-cost UAVs to be the onboard structural health management system. It can also be a backup system for aircraft and advanced Space Utility Vehicles. ^