998 resultados para mixed grids


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near threshold, mixed mode (I and II), fatigue crack growth occurs mainly by two mechanisms, coplanar (or shear) mode and branch (or tensile) mode. For a constant ratio of ΔKIKII the shear mode growth shows a self-arrest character and it would only start again when ΔKI and ΔKII are increased. Both shear crack growth and the early stages of tensile crack growth, are of a crystallographic nature; the fatigue crack proceeds along slip planes or grain boundaries. The appearance of the fracture surfaces suggest that the mechanism of crack extension is by developing slip band microcracks which join up to form a macrocrack. This process is thought to be assisted by the nature of the plastic deformation within the reversed plastic zone where high back stresses are set up by dislocation pile-ups against grain boundaries. The interaction of the crack tip stress field with that of the dislocation pile-ups leads to the formation of slip band microcracks and subsequent crack extension. The change from shear mode to tensile mode growth probably occurs when the maximum tensile stress and the microcrack density in the maximum tensile plane direction attain critical values.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this technical report is to present some detailed explanations in order to help to understand and use the Message Passing Interface (MPI) parallel programming for solving several mixed integer optimization problems. We have developed a C++ experimental code that uses the IBM ILOG CPLEX optimizer within the COmputational INfrastructure for Operations Research (COIN-OR) and MPI parallel computing for solving the optimization models under UNIX-like systems. The computational experience illustrates how can we solve 44 optimization problems which are asymmetric with respect to the number of integer and continuous variables and the number of constraints. We also report a comparative with the speedup and efficiency of several strategies implemented for some available number of threads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we introduce four scenario Cluster based Lagrangian Decomposition (CLD) procedures for obtaining strong lower bounds to the (optimal) solution value of two-stage stochastic mixed 0-1 problems. At each iteration of the Lagrangian based procedures, the traditional aim consists of obtaining the solution value of the corresponding Lagrangian dual via solving scenario submodels once the nonanticipativity constraints have been dualized. Instead of considering a splitting variable representation over the set of scenarios, we propose to decompose the model into a set of scenario clusters. We compare the computational performance of the four Lagrange multiplier updating procedures, namely the Subgradient Method, the Volume Algorithm, the Progressive Hedging Algorithm and the Dynamic Constrained Cutting Plane scheme for different numbers of scenario clusters and different dimensions of the original problem. Our computational experience shows that the CLD bound and its computational effort depend on the number of scenario clusters to consider. In any case, our results show that the CLD procedures outperform the traditional LD scheme for single scenarios both in the quality of the bounds and computational effort. All the procedures have been implemented in a C++ experimental code. A broad computational experience is reported on a test of randomly generated instances by using the MIP solvers COIN-OR and CPLEX for the auxiliary mixed 0-1 cluster submodels, this last solver within the open source engine COIN-OR. We also give computational evidence of the model tightening effect that the preprocessing techniques, cut generation and appending and parallel computing tools have in stochastic integer optimization. Finally, we have observed that the plain use of both solvers does not provide the optimal solution of the instances included in the testbed with which we have experimented but for two toy instances in affordable elapsed time. On the other hand the proposed procedures provide strong lower bounds (or the same solution value) in a considerably shorter elapsed time for the quasi-optimal solution obtained by other means for the original stochastic problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-species management objectives may not be consistent within mixed fisheries. They may lead species to unsafe situations, promote discarding of over-quota and/or misreporting of catches. We provide an algorithm for characterising bio-economic reference points for a mixed fishery as the steady-state solution of a dynamic optimal management problem. The optimisation problem takes into account: i) that species are fishing simultaneously in unselective fishing operations and ii)intertemporal discounting and fleet costs to relate reference points to discounted economic profits along optimal trajectories. We illustrate how the algorithm can be implemented by applying it to the European Northern Stock of Hake (Merluccius merluccius), where fleets also capture Northern megrim (Lepidorhombus whiffiagonis) and Northern anglerfish (Lophius piscatorius and Lophius budegassa). We find that optimal mixed management leads to a target reference point that is quite similar to the 2/3 of the Fmsy single-species (hake) target. Mixed management is superior to singlespecies management because it leads the fishery to higher discounted profits with higher long-term SSB for all species. We calculate that the losses due to the use of the Fmsy single-species (hake) target in this mixed fishery account for 11.4% of total discounted profits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The convective--diffusion equation is of primary importance in such fields as fluid dynamics and heat transfer hi the numerical methods solving the convective-diffusion equation, the finite volume method can use conveniently diversified grids (structured and unstructured grids) and is suitable for very complex geometry The disadvantage of FV methods compared to the finite difference method is that FV-methods of order higher than second are more difficult to develop in three-dimensional cases. The second-order central scheme (2cs) offers a good compromise among accuracy, simplicity and efficiency, however, it will produce oscillatory solutions when the grid Reynolds numbers are large and then very fine grids are required to obtain accurate solution. The simplest first-order upwind (IUW) scheme satisfies the convective boundedness criteria, however. Its numerical diffusion is large. The power-law scheme, QMCK and second-order upwind (2UW) schemes are also often used in some commercial codes. Their numerical accurate are roughly consistent with that of ZCS. Therefore, it is meaningful to offer higher-accurate three point FV scheme. In this paper, the numerical-value perturbational method suggested by Zhi Gao is used to develop an upwind and mixed FV scheme using any higher-order interpolation and second-order integration approximations, which is called perturbational finite volume (PFV) scheme. The PFV scheme uses the least nodes similar to the standard three-point schemes, namely, the number of the nodes needed equals to unity plus the face-number of the control volume. For instanc6, in the two-dimensional (2-D) case, only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized, respectively. The PFV scheme is applied on a number of 1-D problems, 2~Dand 3-D flow model equations. Comparing with other standard three-point schemes, The PFV scheme has much smaller numerical diffusion than the first-order upwind (IUW) scheme, its numerical accuracy are also higher than the second-order central scheme (2CS), the power-law scheme (PLS), the QUICK scheme and the second-order upwind(ZUW) scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a scheme to generate clusters submodels with stage ordering from a (symmetric or a nonsymmetric one) multistage stochastic mixed integer optimization model using break stage. We consider a stochastic model in compact representation and MPS format with a known scenario tree. The cluster submodels are built by storing first the 0-1 the variables, stage by stage, and then the continuous ones, also stage by stage. A C++ experimental code has been implemented for reordering the stochastic model as well as the cluster decomposition after the relaxation of the non-anticipativiy constraints until the so-called breakstage. The computational experience shows better performance of the stage ordering in terms of elapsed time in a randomly generated testbed of multistage stochastic mixed integer problems.