909 resultados para mitochondrial DNA marker
Resumo:
The Caridina indistincta complex is a group of closely related atyid shrimps that inhabit coastal freshwater streams throughout north-eastern Australia. Using mitochondrial DNA sequence data (cytochrome oxidase 1, CO1), we (1) inferred the timing of speciation in the C. indistincta group and (2) examined the intraspecific phylogeographic patterns within the group. Assuming a shrimp-specific rate of CO1 evolution, the level of sequence divergence among species suggests that speciation took place during the Miocene epoch. Within one widespread mainland species, phylogeographic patterns suggest strong geographic 'regionalisation' of mtDNA lineages that are most likely of Pleistocene origin. By contrast, another species comprises two highly divergent mtDNA lineages that occur in sympatry. We suggest that although Pleistocene sea-level regressions appear important in generating population-level phylogeographic patterns, these events were largely unimportant in the formation of species in this group.
Resumo:
Animais híbridos representam um desafio à taxonomia e sistemática, pois correspondem a unidades evolutivas geralmente sem clara delimitação morfológica, comportamental e genética. Híbridos podem ser morfologicamente intermediários aos parentais ou, devido à introgressão e retrocruzamentos, suas características podem se misturar tornando difícil sua identificação. Uma das formas de identificação de híbridos é por meio de ferramentas de biologia molecular, que ao utilizarem marcadores de DNA mitocondrial (herança exclusiva materna) e DNA nuclear (herança materna e paterna), permitem a comparação entre informações genéticas. Além da hibridização existem outras fontes de conflito entre dados moleculares provenientes do DNA mitocondrial e DNA nuclear, como por exemplo a retenção de polimorfismos ancentrais. Em localidades do Espírito Santo, Brasil, foram coletados indivíduos de morfologia distinta de Trachycephalus mesophaeus e T. nigromaculatus, que são as únicas espécies do gênero conhecidas nesse estado. Porém, estudos piloto usando o gene mitocondrial Citocromo Oxidase subunidade I (COI) agruparam esses espécimes com amostras de T. typhonius. Devido a estas incongruências, foram sequenciados fragmentos de dois genes mitocondriais - COI e Nicotinamida Desidrogenase subunidade 2 (ND2) e um exon nuclear (tirosinase) de 173 indivíduos de Trachycephalus, de forma a esclarecer as identificações taxonômicas e investigar a correspondência entre caracteres morfológicos e genéticos nesta linhagem, na sua área de ocorrência As filogenias moleculares, divergências genéticas, redes de haplótipos e polimorfismos de nucleotídeos únicos (SNPs) confirmaram as três espécies acima mencionadas como linhagens evolutivas distintas e revelaram mais sete indivíduos potencialmente híbridos, mas morfologicamente assinalados a T. mesophaeus, T. nigromaculatus ou T. typhonius.. Devido à taxa de evolução lenta da tirosinase, as espécies mais recentes T. typhonius e T. nigromaculatus parecem não terem sido sorteadas completamente nesse gene. Já T. mesophaeus, que é a espécie mais antiga das três, foi recuperada inequivocamente em todas as análises. De forma inédita, as análises moleculares evidenciaram a ocorrência de introgressão bidirecional entre T. nigromaculatus e T. typhonius e entre T. nigromaculatus e T. mesophaeus, sendo que há indícios de indivíduos F1 (cruzamentos entre espécies parentais puras gerando híbridos). A utilização do gene ND2 mostrou-se mais eficiente do que o gene COI nas filogenias e, apesar da tirosinase ser um gene nuclear de evolução lenta, contribuiu para a identificação de incongruências citonucleares. Nossos resultados mostram que a história filogenética de Trachycephalus é complexa e que o uso de marcadores nucleares de evolução mais rápida e ampliação dessas análises para outras espécies do gênero podem revelar mais eventos de hibridização.
Resumo:
As citopatias mitocondriais constituem um importante grupo de doenças metabólicas de expressão clínica heterogénea, para as quais não existe uma terapia eficaz. A maioria destas doenças é causada por uma disfunção ao nível da fosforilação oxidativa (OXPHOS), originando consequentemente uma deficiente produção de energia. O correto funcionamento da OXPHOS resulta de uma interação coordenada entre o genoma nuclear e mitocondrial. Assim, as doenças mitocondriais podem ser causadas por defeitos moleculares no genoma mitocondrial, no nuclear, ou em ambos, originando as doenças da comunicação intergenómica, que resultam na perda ou na instabilidade do DNA mitocondrial (mtDNA), e podem causar quer deleções múltiplas, quer depleção do genoma mitocondrial. A síndrome da depleção do mtDNA constitui um grupo de doenças raras, autossómicas recessivas, que se manifestam maioritariamente após o nascimento, causando a morte de muitos doentes durante a infância ou início da adolescência devido a uma redução acentuada do número de cópias do mtDNA. Trata-se de uma síndrome fenotipicamente heterogénea, apresentando-se sob três apresentações clínicas: hepatocerebral, miopática e encefalomiopática. A caracterização molecular destes doentes é importante não só para permitir a realização de aconselhamento genético e diagnóstico pré-natal adequados, mas também para melhorar a compreensão da fisiopatologia da doença e as opções terapêuticas.
Resumo:
Selenium functions as a co-factor for the reduction of antioxidant enzymes and is an important component of antioxidant enzymes. Dietary selenium significantly inhibits the induction of skin, liver, colon, and mammary tumours in experimental animals by a number of different carcinogens, as well as the induction of mammary tumours by viruses. Selenium shows a “U” shaped curve for functionality, whereby too little is as damaging as too much. At optimal levels, selenium may protect against the formation of DNA adducts, DNA or chromosome breakage, chromosome gain or loss, mitochondrial DNA, and telomere length and function. Aim of study: Investigate the relation between selenium and genotoxic effects in a human biomonitoring study applied to occupational health.
Resumo:
The yeast Saccharomyces cerevisiae is a useful model organism for studying lead (Pb) toxicity. Yeast cells of a laboratory S. cerevisiae strain (WT strain) were incubated with Pb concentrations up to 1,000 μmol/l for 3 h. Cells exposed to Pb lost proliferation capacity without damage to the cell membrane, and they accumulated intracellular superoxide anion (O2 .−) and hydrogen peroxide (H2O2). The involvement of the mitochondrial electron transport chain (ETC) in the generation of reactive oxygen species (ROS) induced by Pb was evaluated. For this purpose, an isogenic derivative ρ0 strain, lacking mitochondrial DNA, was used. The ρ0 strain, without respiratory competence, displayed a lower intracellular ROS accumulation and a higher resistance to Pb compared to the WT strain. The kinetic study of ROS generation in yeast cells exposed to Pb showed that the production of O2 .− precedes the accumulation of H2O2, which is compatible with the leakage of electrons from the mitochondrial ETC. Yeast cells exposed to Pb displayed mutations at the mitochondrial DNA level. This is most likely a consequence of oxidative stress. In conclusion, mitochondria are an important source of Pb-induced ROS and, simultaneously, one of the targets of its toxicity.
Resumo:
The Great Lakes lie within a region of East Africa with very high human genetic diversity, home of many ethno-linguistic groups usually assumed to be the product of a small number of major dispersals. However, our knowledge of these dispersals relies primarily on the inferences of historical, linguistics and oral traditions, with attempts to match up the archaeological evidence where possible. This is an obvious area to which archaeogenetics can contribute, yet Uganda, at the heart of these developments, has not been studied for mitochondrial DNA (mtDNA) variation. Here, we compare mtDNA lineages at this putative genetic crossroads across 409 representatives of the major language groups: Bantu speakers and Eastern and Western Nilotic speakers. We show that Uganda harbours one of the highest mtDNA diversities within and between linguistic groups, with the various groups significantly differentiated from each other. Despite an inferred linguistic origin in South Sudan, the data from the two Nilotic-speaking groups point to a much more complex history, involving not only possible dispersals from Sudan and the Horn but also large-scale assimilation of autochthonous lineages within East Africa and even Uganda itself. The Eastern Nilotic group also carries signals characteristic of West-Central Africa, primarily due to Bantu influence, whereas a much stronger signal in the Western Nilotic group suggests direct West-Central African ancestry. Bantu speakers share lineages with both Nilotic groups, and also harbour East African lineages not found in Western Nilotic speakers, likely due to assimilating indigenous populations since arriving in the region ~3000 years ago.
Resumo:
Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of "migratory routes" in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians--from Huelva and Granada provinces--and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia.
Resumo:
There are two very different interpretations of the prehistory of Island Southeast Asia (ISEA), with genetic evidence invoked in support of both. The "out-of-Taiwan" model proposes a major Late Holocene expansion of Neolithic Austronesian speakers from Taiwan. An alternative, proposing that Late Glacial/postglacial sea-level rises triggered largely autochthonous dispersals, accounts for some otherwise enigmatic genetic patterns, but fails to explain the Austronesian language dispersal. Combining mitochondrial DNA (mtDNA), Y-chromosome and genome-wide data, we performed the most comprehensive analysis of the region to date, obtaining highly consistent results across all three systems and allowing us to reconcile the models. We infer a primarily common ancestry for Taiwan/ISEA populations established before the Neolithic, but also detected clear signals of two minor Late Holocene migrations, probably representing Neolithic input from both Mainland Southeast Asia and South China, via Taiwan. This latter may therefore have mediated the Austronesian language dispersal, implying small-scale migration and language shift rather than large-scale expansion.
Resumo:
The various genetic systems (mitochondrial DNA, the Y-chromosome and the genome-wide autosomes) indicate that Africa is the most genetically diverse continent in the world and the most likely place of origin for anatomically modern humans. However, where in Africa modern humans arose and how the current genetic makeup within the continent was shaped is still open to debate. Here, we summarize the debate and focus especially on the maternally inherited mitochondrial DNA (mtDNA) and a recently revised chronology for the African mtDNA tree. We discuss the possible origin of modern humans in southern, eastern or Central Africa; the possibility of a migration from southern to eastern Africa more than 100 ka, carrying lineages within mtDNA haplogroup L0; the evidence for a climate-change-mediated population expansion in eastern Africa involving mtDNA haplogroup L3, leading to the “out-of-Africa” migration around 70–60 ka; the re-population of North Africa from the Near East around 40–30 ka suggested by mtDNA haplogroups U6 and M1; the evidence for population expansions and dispersals across the continent at the onset of the Holocene ; and the impact of the Bantu dispersals in Central, eastern and southern Africa within the last few millennia.
Resumo:
There has been a long-standing debate concerning the extent to which the spread of Neolithic ceramics and Malay-Polynesian languages in Island Southeast Asia (ISEA) were coupled to an agriculturally driven demic dispersal out of Taiwan 4000 years ago (4 ka). We previously addressed this question using founder analysis of mitochondrial DNA (mtDNA) control-region sequences to identify major lineage clusters most likely to have dispersed from Taiwan into ISEA, proposing that the dispersal had a relatively minor impact on the extant genetic structure of ISEA, and that the role of agriculture in the expansion of the Austronesian languages was therefore likely to have been correspondingly minor. Here we test these conclusions by sequencing whole mtDNAs from across Taiwan and ISEA, using their higher chronological precision to resolve the overall proportion that participated in the "out-of-Taiwan" mid-Holocene dispersal as opposed to earlier, postglacial expansions in the Early Holocene. We show that, in total, about 20 % of mtDNA lineages in the modern ISEA pool result from the "out-of-Taiwan" dispersal, with most of the remainder signifying earlier processes, mainly due to sea-level rises after the Last Glacial Maximum. Notably, we show that every one of these founder clusters previously entered Taiwan from China, 6-7 ka, where rice-farming originated, and remained distinct from the indigenous Taiwanese population until after the subsequent dispersal into ISEA.
Resumo:
New G-banded karyotypes from populations of the common shrew Sorex araneus Linnaeus, 1758 provide a clearer picture of the distribution of chromosome races in central Europe. As expected according to their occurrence in neighbouring countries, the Jutland (kq, no), Laska (k/o) and Drnholec (ko, nr) races are also found in Germany. A new chromosome race "Rugen" (kq) is described from this Baltic Island. Together with the previously recorded races Ulm and Mooswald (kr), six chromosome races are now known from Germany. The resulting distribution pattern is characterized by high frequencies of different race-specific metacentrics at the periphery of the country and clines with decreasing frequencies towards the centre which is occupied by the Ulm race. This race is acrocentric for all chromosome arms involved in the observed race-specific fusions and represents a buffer between the surrounding, more metacentric races. According to the present distribution of these metacentrics, a scenario for the postglacial recolonization of central Europe by S. araneus populations on three different routes is proposed: from the east along the northern slopes of the Carpathian Arc, from the south-east along the Danube Valley and from the south-west through the Upper Rhine Valley.
Resumo:
It has been long recognized that highly polymorphic genetic markers can lead to underestimation of divergence between populations when migration is low. Microsatellite loci, which are characterized by extremely high mutation rates, are particularly likely to be affected. Here, we report genetic differentiation estimates in a contact zone between two chromosome races of the common shrew (Sorex araneus), based on 10 autosomal microsatellites, a newly developed Y-chromosome microsatellite, and mitochondrial DNA. These results are compared to previous data on proteins and karyotypes. Estimates of genetic differentiation based on F- and R-statistics are much lower for autosomal microsatellites than for all other genetic markers. We show by simulations that this discrepancy stems mainly from the high mutation rate of microsatellite markers for F-statistics and from deviations from a single-step mutation model for R-statistics. The sex-linked genetic markers show that all gene exchange between races is mediated by females. The absence of male-mediated gene flow most likely results from male hybrid sterility.
Resumo:
The present study investigated promoter hypermethylation of TP53 regulatory pathways providing a potential link between epigenetic changes and mitochondrial DNA (mtDNA) alterations in breast cancer patients lacking a TP53 mutation. The possibility of using the cancer-specific alterations in serum samples as a blood-based test was also explored. Triple-matched samples (cancerous tissues, matched adjacent normal tissues and serum samples) from breast cancer patients were screened for TP53 mutations, and the promoter methylation profile of P14(ARF), MDM2, TP53 and PTEN genes was analyzed as well as mtDNA alterations, including D-loop mutations and mtDNA content. In the studied cohort, no mutation was found in TP53 (DNA-binding domain). Comparison of P14(ARF) and PTEN methylation patterns showed significant hypermethylation levels in tumor tissues (P < 0.05 and <0.01, respectively) whereas the TP53 tumor suppressor gene was not hypermethylated (P < 0.511). The proportion of PTEN methylation was significantly higher in serum than in the normal tissues and it has a significant correlation to tumor tissues (P < 0.05). mtDNA analysis revealed 36.36% somatic and 90.91% germline mutations in the D-loop region and also significant mtDNA depletion in tumor tissues (P < 0.01). In addition, the mtDNA content in matched serum was significantly lower than in the normal tissues (P < 0.05). These data can provide an insight into the management of a therapeutic approach based on the reversal of epigenetic silencing of the crucial genes involved in regulatory pathways of the tumor suppressor TP53. Additionally, release of significant aberrant methylated PTEN in matched serum samples might represent a promising biomarker for breast cancer.
Resumo:
DNA-based techniques are important tools for species assignment, in particular when identification with morphological criteria is difficult. The aim of this study was to genetically determine the species identity of tree frogs (Hyla spp.) populations from western and northern Switzerland (Swiss Plateau), this area being frequently subjected to introductions of species or sub-species from south of the Alps. We sequenced 261 base pairs of the mitochondrial DNA cytochrome b gene from 24 samples of tree frogs from the Swiss Plateau, Ticino (southern Switzerland) and the Dombes region (Ain, France), and compared them with homologous sequences retrieved from DNA databases. The phylogenetic analyses revealed two distinct clades. The first one is represented by samples of Green tree frog (Hyla arborea) from the Swiss Plateau, France, Germany and Greece, confirming the current knowledge about the species' distribution. The second clade includes samples belonging to the Italian tree frog (Hyla intermedia) from south of the Alps (Ticino and Italy), and unexpectedly from the Grangettes site in western Switzerland. These results suggest the introduction of the Italian tree frog H. intermedia north of the Alps, and raise questions about the management of the Grangettes protected area.
Resumo:
Two kinds of small extrachromosomal nucleic acid elements were found in the bovine babesias, Babesia bovis and B. bigemina. One element with an apparent size of 5.5 kilobase pairs (kbp) is a double stranded RNA related to virus like particles. Another molecule is a double stranded DNA with a molecular size of about 6.2 kbp. Southern blot comparison of restriction DNA fragments of the latter molecule, which is present in both B. bovis and B. bigemina is described.