989 resultados para metabolic profiling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

King, R.D., Garrett, S.M., Coghill, G.M. (2005). On the use of qualitative reasoning to simulate and identify metabolic pathways. Bioinformatics 21(9):2017-2026 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coghill, G. M., Garrett, S. M. and King, R. D. (2004) Learning Qualitative Metabolic Models. European Conference on Artificial Intelligence (ECAI'04)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chapter 1 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cairns, A. J., Gallagher, J. A. (2004). Absence of turnover and futile cycling of sucrose in leaves of Lolium temulentum L.: implications for metabolic compartmentation. Planta, 219 (5), 836-846. Sponsorship: BBSRC RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Load balancing is often used to ensure that nodes in a distributed systems are equally loaded. In this paper, we show that for real-time systems, load balancing is not desirable. In particular, we propose a new load-profiling strategy that allows the nodes of a distributed system to be unequally loaded. Using load profiling, the system attempts to distribute the load amongst its nodes so as to maximize the chances of finding a node that would satisfy the computational needs of incoming real-time tasks. To that end, we describe and evaluate a distributed load-profiling protocol for dynamically scheduling time-constrained tasks in a loosely-coupled distributed environment. When a task is submitted to a node, the scheduling software tries to schedule the task locally so as to meet its deadline. If that is not feasible, it tries to locate another node where this could be done with a high probability of success, while attempting to maintain an overall load profile for the system. Nodes in the system inform each other about their state using a combination of multicasting and gossiping. The performance of the proposed protocol is evaluated via simulation, and is contrasted to other dynamic scheduling protocols for real-time distributed systems. Based on our findings, we argue that keeping a diverse availability profile and using passive bidding (through gossiping) are both advantageous to distributed scheduling for real-time systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-speed networks, such as ATM networks, are expected to support diverse Quality of Service (QoS) constraints, including real-time QoS guarantees. Real-time QoS is required by many applications such as those that involve voice and video communication. To support such services, routing algorithms that allow applications to reserve the needed bandwidth over a Virtual Circuit (VC) have been proposed. Commonly, these bandwidth-reservation algorithms assign VCs to routes using the least-loaded concept, and thus result in balancing the load over the set of all candidate routes. In this paper, we show that for such reservation-based protocols|which allow for the exclusive use of a preset fraction of a resource's bandwidth for an extended period of time-load balancing is not desirable as it results in resource fragmentation, which adversely affects the likelihood of accepting new reservations. In particular, we show that load-balancing VC routing algorithms are not appropriate when the main objective of the routing protocol is to increase the probability of finding routes that satisfy incoming VC requests, as opposed to equalizing the bandwidth utilization along the various routes. We present an on-line VC routing scheme that is based on the concept of "load profiling", which allows a distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. We show the effectiveness of our load-profiling approach when compared to traditional load-balancing and load-packing VC routing schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To support the diverse Quality of Service (QoS) requirements of real-time (e.g. audio/video) applications in integrated services networks, several routing algorithms that allow for the reservation of the needed bandwidth over a Virtual Circuit (VC) established on one of several candidate routes have been proposed. Traditionally, such routing is done using the least-loaded concept, and thus results in balancing the load across the set of candidate routes. In a recent study, we have established the inadequacy of this load balancing practice and proposed the use of load profiling as an alternative. Load profiling techniques allow the distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. In this paper we thoroughly characterize the performance of VC routing using load profiling and contrast it to routing using load balancing and load packing. We do so both analytically and via extensive simulations of multi-class traffic routing in Virtual Path (VP) based networks. Our findings confirm that for routing guaranteed bandwidth flows in VP networks, load balancing is not desirable as it results in VP bandwidth fragmentation, which adversely affects the likelihood of accepting new VC requests. This fragmentation is more pronounced when the granularity of VC requests is large. Typically, this occurs when a common VC is established to carry the aggregate traffic flow of many high-bandwidth real-time sources. For VP-based networks, our simulation results show that our load-profiling VC routing scheme performs better or as well as the traditional load-balancing VC routing in terms of revenue under both skewed and uniform workloads. Furthermore, load-profiling routing improves routing fairness by proactively increasing the chances of admitting high-bandwidth connections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schizophrenia represents one of the world’s most devastating illnesses due to its often lifelong course and debilitating nature. The treatment of schizophrenia has vastly improved over recent decades with the discovery of several antipsychotic compounds; however these drugs are not without adverse effects that must be addressed to maximize their therapeutic value. Newer, atypical, antipsychotics are associated with a compilation of serious metabolic side effects including weight gain, insulin resistance, fat deposition, glucose dysregulation and ensuing co-morbidities such as type II diabetes mellitus. The mechanisms underlying these side effects remain to be fully elucidated and adequate interventions are lacking. Further understanding of the factors that contribute these side effects is therefore required in order to develop effective adjunctive therapies and to potentially design antipsychotic drugs in the future with reduced impact on the metabolic health of patients. We investigated if the gut microbiota represented a novel mechanism contributing to the metabolic dysfunction associated with atypical antipsychotics. The gut microbiota comprises the bacteria that exist symbiotically within the gastrointestinal tract, and has been shown in recent years to be involved in several aspects of energy balance and metabolism. We have demonstrated that administration of certain antipsychotics in the rat results in an altered microbiota profile and, moreover, that the microbiota is required for the full scale of metabolic dysfunction to occur. We have further shown that specific antibiotics can attenuate certain aspects of olanzapine and risperidone–induced metabolic dysfunction, in particular fat deposition and adipose tissue inflammation. Mechanisms underlying this novel link appear to involve energy utilization via expression of lipogenic genes as well as reduced inflammatory tone. Taken together, these data indicate that the gut microbiota is an important factor involved in the myriad of metabolic complications associated with antipsychotic therapy. Furthermore, these data support the future investigation of microbial-based therapeutics for not only antipsychotic-induced weight gain but also for tackling the global obesity epidemic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ribosome profiling (ribo-seq) is a recently developed technique that provides genomewide information on protein synthesis (GWIPS) in vivo. The high resolution of ribo-seq is one of the exciting properties of this technique. In Chapter 2, I present a computational method that utilises the sub-codon precision and triplet periodicity of ribosome profiling data to detect transitions in the translated reading frame. Application of this method to ribosome profiling data generated for human HeLa cells allowed us to detect several human genes where the same genomic segment is translated in more than one reading frame. Since the initial publication of the ribosome profiling technique in 2009, there has been a proliferation of studies that have used the technique to explore various questions with respect to translation. A review of the many uses and adaptations of the technique is provided in Chapter 1. Indeed, owing to the increasing popularity of the technique and the growing number of published ribosome profiling datasets, we have developed GWIPS-viz (http://gwips.ucc.ie), a ribo-seq dedicated genome browser. Details on the development of the browser and its usage are provided in Chapter 3. One of the surprising findings of ribosome profiling of initiating ribosomes carried out in 3 independent studies, was the widespread use of non-AUG codons as translation initiation start sites in mammals. Although initiation at non-AUG codons in mammals has been documented for some time, the extent of non-AUG initiation reported by these ribo-seq studies was unexpected. In Chapter 4, I present an approach for estimating the strength of initiating codons based on the leaky scanning model of translation initiation. Application of this approach to ribo-seq data illustrates that initiation at non-AUG codons is inefficient compared to initiation at AUG codons. In addition, our approach provides a probability of initiation score for each start site that allows its strength of initiation to be evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gastrointestinal tract (GIT) is a diverse ecosystem, and is colonised by a diverse array of bacteria, of which bifidobacteria are a significant component. Bifidobacteria are Gram-positive, saccharolytic, non-motile, non-sporulating, anaerobic, Y-shaped bacteria, which possess a high GC genome content. Certain bifidobacteria possess the ability to produce conjugated linoleic acid (CLA) from linoleic acid (LA) by a biochemical pathway that is hypothesised to be achieved via a linoleic isomerase. In Chapter two of this thesis it was found that the MCRA-specifying gene is not involved in CLA production in B. breve NCFB 2258, and that this gene specifies an oleate hydratase involved in the conversion of oleic acid into 10-hydroxystearic acid. Prebiotics are defined as non-digestible food ingredients that beneficially affect the host by selectively stimulating growth and/or activity of one or a limited number of bacteria in the colon. Key to the development of such novel prebiotics is to understand which carbohydrates support growth of bifidobacteria and how such carbohydrates are metabolised. In Chapter 3 of this thesis we describe the identification and characterisation of two neighbouring gene clusters involved in the metabolism of raffinose-containing carbohydrates (plus related carbohydrate melibiose) and melezitose by Bifidobacterium breve UCC2003. The fourth chapter of this thesis describes the analysis of transcriptional regulation of the raf and mel clusters. In the final experimental chapter two putative rep genes, designated repA7017 and repB7017, are identified on the megaplasmid pBb7017 of B. breve JCM 7017, the first bifidobacterial megaplasmid to be reported. One of these, repA7017, was subjected to an in-depth characterisation. The work described in this thesis has resulted in an improved understanding of bifidobacterial fatty acid and carbohydrate metabolism, Furthermore, attempts were made to develop novel genetic tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, attacks on cryptographic algorithms looked for mathematical weaknesses in the underlying structure of a cipher. Side-channel attacks, however, look to extract secret key information based on the leakage from the device on which the cipher is implemented, be it smart-card, microprocessor, dedicated hardware or personal computer. Attacks based on the power consumption, electromagnetic emanations and execution time have all been practically demonstrated on a range of devices to reveal partial secret-key information from which the full key can be reconstructed. The focus of this thesis is power analysis, more specifically a class of attacks known as profiling attacks. These attacks assume a potential attacker has access to, or can control, an identical device to that which is under attack, which allows him to profile the power consumption of operations or data flow during encryption. This assumes a stronger adversary than traditional non-profiling attacks such as differential or correlation power analysis, however the ability to model a device allows templates to be used post-profiling to extract key information from many different target devices using the power consumption of very few encryptions. This allows an adversary to overcome protocols intended to prevent secret key recovery by restricting the number of available traces. In this thesis a detailed investigation of template attacks is conducted, along with how the selection of various attack parameters practically affect the efficiency of the secret key recovery, as well as examining the underlying assumption of profiling attacks in that the power consumption of one device can be used to extract secret keys from another. Trace only attacks, where the corresponding plaintext or ciphertext data is unavailable, are then investigated against both symmetric and asymmetric algorithms with the goal of key recovery from a single trace. This allows an adversary to bypass many of the currently proposed countermeasures, particularly in the asymmetric domain. An investigation into machine-learning methods for side-channel analysis as an alternative to template or stochastic methods is also conducted, with support vector machines, logistic regression and neural networks investigated from a side-channel viewpoint. Both binary and multi-class classification attack scenarios are examined in order to explore the relative strengths of each algorithm. Finally these machine-learning based alternatives are empirically compared with template attacks, with their respective merits examined with regards to attack efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potatoes (Solanum Tuberosum L.) contain secondary metabolites that may have an impact on human health. The aim of this study was to assess the levels of some of these compounds in a wide range of varieties, including rare, heritage and commercial cultivars. Vitamin C, total carotenoids, phenolics, flavonoids, antioxidant activity and glycoalkaloids were determined, using spectroscopy and chromatography, in the skin and flesh of tubers grown in field trials. Transcript levels of key synthetic enzymes were assessed by qPCR. Accumulation of selected metabolites was higher in the skin than in the flesh of tubers, except ascorbate, which was undetected in the skin. Differences were on average 2.5 to 3-fold for carotenoids, 6-fold for phenolics, 15 to 16-fold for flavonoids, 21-fold for glycoalkaloids and 9 to 10-fold for antioxidant activity. Higher contents of carotenoids were associated with yellow skin or flesh, and higher values of phenolics, flavonoids and antioxidant activity with blue flesh. Variety ‘Burren’ had maxima values of carotenoids in skin and flesh, variety ‘Nicola’ of ascorbate, variety ‘Congo’ of phenolics, flavonoids and antioxidant activity in both tissues, except antioxidant activity in the skin, which was higher in ‘Edzell Blue’. Varieties ‘May Queen’ and ‘International Kidney’ had highest glycoalkaloid content in skin and flesh respectively. The effect of the environment was diverse: year of cultivation was significant for all metabolites, but site of cultivation was not for carotenoids and glycoalkaloids. Levels of expression of phenylalanine ammonia-lyase and chalcone synthase were higher in varieties accumulating high contents of phenolic compounds. However, levels of expression of phytoene synthase and L-galactono-1,4-lactone dehydrogenase were not different between varieties showing contrasting levels of carotenoids and ascorbate respectively. This work will help identify varieties that could be marketed as healthier and the most suitable varieties for extraction of high-value metabolites such as glycoalkaloids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycolysis, glutaminolysis, the Krebs cycle and oxidative phosphorylation are the main metabolic pathways. Exposing cells to key metabolic substrates (glucose, glutamine and pyruvate); investigation of the contribution of substrates in stress conditions such as uncoupling and hypoxia was conducted. Glycolysis, O2 consumption, O2 and ATP levels and hypoxia inducible factor (HIF) signalling in PC12 cells were investigated. Upon uncoupling with FCCP mitochondria were depolarised similarly in all cases, but a strong increase in respiration was only seen in the cells fed on glutamine with either glucose or pyruvate. Inhibition of glutaminolysis reversed the glutamine dependant effect. Differential regulation of the respiratory response to FCCP by metabolic environment suggests mitochondrial uncoupling has a potential for substrate-specific inhibition of cell function. At reduced O2 availability (4 % and 0 % O2), cell bioenergetics and local oxygenation varied depending on the substrate composition. Results indicate that both supply and utilisation of key metabolic substrates can affect the pattern of HIF-1/2α accumulation by differentially regulating iO2¬, ATP levels and Akt/Erk/AMPK pathways. Inhibition of key metabolic pathways can modulate HIF regulatory pathways, metabolic responses and survival of cancer cells in hypoxia. Hypoxia leads to transcriptional activation, by HIF, of pyruvate dehydrogenase (PDH) kinase which phosphorylates and inhibits PDH, a mitochondrial enzyme that converts pyruvate into acetyl-CoA. The levels of PDH (total and phosphorylated), PDH kinase and HIF-1α were analysed in HCT116 and HCT116 SCO2-/- (deficient in complex IV of the respiratory chain) grown under 20.9 % and 3 % O2. Data indicate that regulation of PDH can occur in a manner independent of the HIF-1/PDH kinase 1 axis, mitochondrial respiration and the demand for acetyl-CoA. Collectively these results can be applied to many diseases; reduced nutrient supply and O2 during ischemia/stroke, hypoglycaemia in diabetes mellitus and cancer associated changes in uncoupling protein expression levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The specific health benefits of meeting physical activity guidelines are unclear in older adults. We examined the association between meeting, not meeting, or change in status of meeting physical activity guidelines through walking and the 5-year incidence of metabolic syndrome in older adults. METHODS: A total of 1,863 Health, Aging, and Body Composition (Health ABC) Study participants aged 70-79 were followed for 5 years (1997-1998 to 2002-2003). Four walking groups were created based on self-report during years 1 and 6: Sustained low (Year 1, <150 min/week, and year 6, <150 min/week), decreased (year 1, >150 min/week, and year 6, <150 min/week), increased (year 1, <150 min/week, and year 6, >150 min/week), and sustained high (year 1, >150 min/week, and year 6, >150 min/week). Based on the Adult Treatment Panel III (ATP III) panel guidelines, the metabolic syndrome criterion was having three of five factors: Large waist circumference, elevated blood pressure, triglycerides, blood glucose, and low high-density lipoprotein (HDL) levels. RESULTS: Compared to the sustained low group, the sustained high group had a 39% reduction in odds of incident metabolic syndrome [adjusted odds ratio (OR) = 0.61; 95% confidence interval (CI), 0.40-0.93], and a significantly lower likelihood of developing the number of metabolic syndrome risk factors that the sustained low group developed over 5 years (beta = -0.16, P = 0.04). CONCLUSIONS: Meeting or exceeding the physical activity guidelines via walking significantly reduced the odds of incident metabolic syndrome and onset of new metabolic syndrome components in older adults. This protective association was found only in individuals who sustained high levels of walking for physical activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T cell activation leads to dramatic shifts in cell metabolism to protect against pathogens and to orchestrate the action of other immune cells. Quiescent T cells require predominantly ATP-generating processes, whereas proliferating effector T cells require high metabolic flux through growth-promoting pathways. Further, functionally distinct T cell subsets require distinct energetic and biosynthetic pathways to support their specific functional needs. Pathways that control immune cell function and metabolism are intimately linked, and changes in cell metabolism at both the cell and system levels have been shown to enhance or suppress specific T cell functions. As a result of these findings, cell metabolism is now appreciated as a key regulator of T cell function specification and fate. This review discusses the role of cellular metabolism in T cell development, activation, differentiation, and function to highlight the clinical relevance and opportunities for therapeutic interventions that may be used to disrupt immune pathogenesis.