957 resultados para melt season
Resumo:
The effects of crystal chemistry and melt composition on the control of clinopyroxene/melt element partitioning (D) during the assimilation of olivine/peridotite by felsic magma have been investigated in Mesozoic high-Mg diorites from North China. The assimilation resulted in significant increase of Mg, Cr and Ni and only slight (< 30%) decrease of incompatible elements of the magma, and the compositional variations have been mirrored by the normally and reversely zoned clinopyroxene microphenocrysts formed at the early stage of the magma evolution. The Mg# [100 × Mg / (Mg + Fe)] values of the reversely zoned clinopyroxenes increase from 65 to 75 in the core to 85–90 in the high-Mg midsection, and reduce back to 73–79 at the rim. Trace element profiles across all these clinopyroxene domains have been measured by LA-ICP-MS. The melt trace element composition has been constrained from bulk rock analyses of the fine-grained low- and high-Mg diorites. Clinopyroxene/melt partition coefficients for rare earth elements (REE) and Y in the high-Mg group zonings (Mg# > 73–79, DDy < 1.2) are positively correlated with tetrahedral IVAl and increase by a factor of 3–4 as tetrahedral IVAl increases from 0.01 to 0.1 per formula unit (pfu). These systematic variations are interpreted to be controlled by the clinopyroxene composition. In contrast, partition coefficients for low-Mg group zonings (Mg# < 75–79, DDy > 1.2) are elevated by up to an order of magnitude (for REE and Y) or more (for Zr and Hf) at similar IVAl, indicating dominant control of melt composition/structure. DZr and DHf show a larger sensitivity to the compositional change of crystal and melt than DREE. DTi values for the low- and high-Mg zonings show a uniform dependence on IVAl. DSr and DLi are insensitive to the compositional change of clinopyroxene and melt, resulting in Sr depletions in the clinopyroxene zonings with elevated REE without crystallization of plagioclase. Our observations show that crystal chemistry and melt composition/structure may alternatively control clinopyroxene/melt partitioning during the assimilation of peridotite by felsic magma, and may be useful for deciphering clinopyroxene compositions and related crust–mantle processes.
Resumo:
Nutrient leaching studies are expensive and require expertise in water collection and analyses. Less expensive or easier methods that estimate leaching losses would be desirable. The objective of this study was to determine if anion-exchange membranes (AEMs) and reflectance meters could predict nitrate (NO3-N) leaching losses from a cool-season lawn turf. A two-year field study used an established 90% Kentucky bluegrass (Poa pratensis L.)-10% creeping red fescue (Festuca rubra L.) turf that received 0 to 98 kg N ha-1 month-1, from May through November. Soil monolith lysimeters collected leachate that was analyzed for NO3-N concentration. Soil NO3-N was estimated with AEMs. Spectral reflectance measurements of the turf were obtained with chlorophyll and chroma meters. No significant (p > 0.05) increase in percolate flow-weighted NO3-N concentration (FWC) or mass loss occurred when AEM desorbed soil NO3-N was below 0.84 µg cm-2 d-1. A linear increase in FWC and mass loss (p < 0.0001) occurred, however, when AEM soil NO3-N was above this value. The maximum contaminant level (MCL) for drinking water (10 mg L-1 NO3-N) was reached with an AEM soil NO3-N value of 1.6 µg cm-2 d-1. Maximum meter readings were obtained when AEM soil NO3 N reached or exceeded 2.3 µg cm-2 d-1. As chlorophyll index and hue angle (greenness) increased, there was an increased probability of exceeding the NO3-N MCL. These data suggest that AEMs and reflectance meters can serve as tools to predict NO3-N leaching losses from cool-season lawn turf, and to provide objective guides for N fertilization.
Resumo:
Tissue N analysis a tool available for N management of turfgrass. However, peer-reviewed calibration studies to determine optimum tissue N values are lacking. A field experiment with a mixed cool-season species lawn and a greenhouse experiment with Kentucky bluegrass (Poa pratensis L.) were conducted across 2 yr, each with randomized complete block design. Treatments were N application rates between 0 and 587 kg N ha-1 yr-1. In the field experiment, clipping samples were taken monthly from May to September, dried, ground, and analyzed for total N. Clippings samples were collected one to two mowings after plots were fertilized. Linear plateau models comparing relative clipping yield, Commission Internationale de l' Eclairage hue, and CM1000 index to leaf N concentrations were developed. In the greenhouse experiment, clipping samples were taken every 2 wk from May to October and composited across sample dates for leaf N analysis. Color and clipping yields were related to leaf N concentrations using linear plateau models. These models indicated small marginal improvements in growth or color when leaf N exceeded 30 g kg-1, suggesting that a leaf N test can separate turf with optimum leaf N concentrations from turf with below optimum leaf N concentrations. Plateaus in leaf N concentrations with increasing N fertilizer rates suggest, however, that this test may be unable to identify sites with excess available soil N when turf has been mowed before tissue sampling.
Resumo:
Various N fertilizer sources are available for lawn turf. Few field studies, however, have determined the losses of nitrate (NO3-N) from lawns receiving different formulations of N fertilizers. The objectives of this study were to determine the differences in NO3-N leaching losses among various N fertilizer sources and to ascertain when losses were most likely to occur. The field experiment was set out in a completely random design on a turf typical of the lawns in southern New England. Treatments consisted of four fertilizer sources with fast- and slow-release N formulations: (i) ammonium nitrate (AN), (ii) polymer-coated sulfur-coated urea (PCSCU), (iii) organic product, and (iv) a nonfertilized control. The experiment was conducted across three years and fertilized to supply a total of 147 kg N ha-1 yr-1. Percolate was collected with zero-tension lysimeters. Flow-weighted NO3-N concentrations were 4.6, 0.57, 0.31, and 0.18 mg L-1 for AN, PCSCU, organic, and the control, respectively. After correcting for control losses, average annual NO3-N leaching losses as a percentage of N applied were 16.8% for AN, 1.7% for PCSCU, and 0.6% for organic. Results indicate that NO3-N leaching losses from lawn turf in southern New England occur primarily during the late fall through the early spring. To reduce the threat of NO3-N leaching losses, lawn turf fertilizers should be formulated with a larger percentage of slow-release N than soluble N.
Resumo:
One factor that is investigated as a possible clue to etiological factors in Autism Spectrum Disorders (ASD) is season of birth. Season of birth effects could be the result of temperature, toxins, dietary changes, viral infections, and cultural or social factors that change seasonally (Bolton, Pickles, Harrington, Macdonald, & Rutter, 1992). A number of studies have looked for season of birth effects in ASD with no conclusive results. The current study analyzed season of birth effects in a sample of 441 children diagnosed with ASD. Analysis was also repeated after excluding prematurely born children from the data. Level of functioning and gender effects were tested by breaking the sample into a number of sub-groups. While there were no season of birth effects in the sample of all children with ASD when compared to children without ASD in either the entire sample or the non-premature sample, there were significant differences in the season of birth of low functioning children with ASD when compared with high functioning children with ASD.
Resumo:
Samuel Secunda
Resumo:
Signatur des Originals: S 36/F04356
Resumo:
Precipitation for 2011 was less than the longterm climate average. Early in the year, precipitation lagged behind normal, but then tracked close to the normal accumulation rate from mid-April through mid-August. After that time, precipitation amounts greatly lagged behind normal, and the year ended almost 7 in. behind the long-term average. (Figure 1). Overall, 2011 will be remembered for good moisture early, but ending the season with almost no rainfall.
Resumo:
The Sea Ice Mass Balance in the Antarctic (SIMBA) experiment was conducted from the RVIB N.B. Palmer in September and October 2007 in the Bellingshausen Sea in an area recently experiencing considerable changes in both climate and sea ice cover. Snow and ice properties were observed at 3 short-term stations and a 27-day drift station (Ice Station Belgica, ISB) during the winter-spring transition. Repeat measurements were performed on sea ice and snow cover at 5 ISB sites, each having different physical characteristics, with mean ice (snow) thicknesses varying from 0.6 m (0.1 m) to 2.3 m (0.7 m). Ice cores retrieved every five days from 2 sites and measured for physical, biological, and chemical properties. Three ice mass-balance buoys (IMBs) provided continuous records of snow and ice thickness and temperature. Meteorological conditions changed from warm fronts with high winds and precipitation followed by cold and calm periods through four cycles during ISB. The snow cover regulated temperature flux and controlled the physical regime in which sea ice morphology changed. Level thin ice areas had little snow accumulation and experienced greater thermal fluctuations resulting in brine salinity and volume changes, and winter maximum thermodynamic growth of ~0.6 m in this region. Flooding and snow-ice formation occurred during cold spells in ice and snow of intermediate thickness. In contrast, little snow-ice formed in flooded areas with thicker ice and snow cover, instead nearly isothermal, highly permeable ice persisted. In spring, short-lived cold air episodes did not effectively penetrate the sea ice nor overcome the effect of ocean heat flux, thus favoring net ice thinning from bottom melt over ice thickening from snow-ice growth, in all cases. These warm ice conditions were consistent with regional remote sensing observations of earlier ice breakup and a shorter sea ice season, more recently observed in the Bellingshausen Sea.