936 resultados para melanopsin-containing intrinsically photosensitive retinal ganglion cells
Resumo:
Microfluidic devices can be used for many applications, including the formation of well-controlled emulsions. In this study, the capability to continuously create monodisperse droplets in a microfluidic device was used to form calcium-alginate capsules.Calcium-alginate capsules have many potential uses, such as immunoisolation of cells and microencapsulation of active drug ingredients or bitter agents in food or beverage products. The gelation of calcium-alginate capsules is achieved by crosslinking sodiumalginate with calcium ions. Calcium ions dissociated from calcium carbonate due to diffusion of acetic acid from a sunflower oil phase into an aqueous droplet containing sodium-alginate and calcium carbonate. After gelation, the capsules were separated from the continuous oil phase into an aqueous solution for use in biological applications. Typically, capsules are separated bycentrifugation, which can damage both the capsules and the encapsulated material. A passive method achieves separation without exposing the encapsulated material or the capsules to large mechanical forces, thereby preventing damage. To achieve passiveseparation, the use of a microfluidic device with opposing channel wa hydrophobicity was used to stabilize co-laminar flow of im of hydrophobicity is accomplished by defining one length of the channel with a hydrogel. The chosen hydrogel was poly (ethylene glycol) diacrylate, which adheres to the glass surface through the use of self-assembled monolayer of 3-(trichlorosilyl)-propyl methacrylate. Due to the difference in surface energy within the channel, the aqueous stream is stabilized near a hydrogel and the oil stream is stabilized near the thiolene based optical adhesive defining the opposing length of the channel. Passive separation with co-laminar flow has shown success in continuously separating calcium-alginatecapsules from an oil phase into an aqueous phase. In addition to successful formation and separation of calcium alginate capsules,encapsulation of Latex micro-beads and viable mammalian cells has been achieved. The viability of encapsulated mammalian cells was determined using a live/dead stain. The co-laminar flow device has also been demonstrated as a means of separating liquid-liquidemulsions.
Resumo:
Stem cell regeneration of damaged tissue has recently been reported in many different organs. Since the loss of retinal pigment epithelium (RPE) in the eye is associated with a major cause of visual loss - specifically, age-related macular degeneration - we investigated whether hematopoietic stem cells (HSC) given systemically can home to the damaged subretinal space and express markers of RPE lineage. Green fluorescent protein (GFP) cells of bone marrow origin were used in a sodium iodate (NaIO(3)) model of RPE damage in the mouse. The optimal time for adoptive transfer of bone marrow-derived stem cells relative to the time of injury and the optimal cell type [whole bone marrow, mobilized peripheral blood, HSC, facilitating cells (FC)] were determined by counting the number of GFP(+) cells in whole eye flat mounts. Immunocytochemistry was performed to identify the bone marrow origin of the cells in the RPE using antibodies for CD45, Sca-1, and c-kit, as well as the expression of the RPE-specific marker, RPE-65. The time at which bone marrow-derived cells were adoptively transferred relative to the time of NaIO(3) injection did not significantly influence the number of cells that homed to the subretinal space. At both one and two weeks after intravenous (i.v.) injection, GFP(+) cells of bone marrow origin were observed in the damaged subretinal space, at sites of RPE loss, but not in the normal subretinal space. The combined transplantation of HSC+FC cells appeared to favor the survival of the homed stem cells at two weeks, and RPE-65 was expressed by adoptively transferred HSC by four weeks. We have shown that systemically injected HSC homed to the subretinal space in the presence of RPE damage and that FC promoted survival of these cells. Furthermore, the RPE-specific marker RPE-65 was expressed on adoptively transferred HSC in the denuded areas.
Resumo:
PURPOSE: To characterize chemoattractants expressed by the retinal pigment epithelium (RPE) after sodium iodate (NaIO3)-induced damage and to investigate whether ocular-committed stem cells preexist in the bone marrow (BM) and migrate in response to the chemoattractive signals expressed by the damaged RPE. METHODS: C57/BL6 mice were treated with a single intravenous injection of NaIO3 (50 mg/kg) to create RPE damage. At different time points real-time RT-PCR, ELISA, and immunohistochemistry were used to identify chemoattractants secreted in the subretinal space. Conditioned medium from NaIO3-treated mouse RPE was used in an in vitro assay to assess chemotaxis of stem cell antigen-1 positive (Sca-1+) BM mononuclear cells (MNCs). The expression of early ocular markers (MITF, Pax-6, Six-3, Otx) in migrated cells and in MNCs isolated from granulocyte colony-stimulating factor (G-CSF) and Flt3 ligand (FL)-mobilized and nonmobilized peripheral blood (PB) was analyzed by real-time RT-PCR. RESULTS: mRNA for stromal cell-derived factor-1 (SDF-1), C3, hepatocyte growth factor (HGF), and leukemia inhibitory factor (LIF) was significantly increased, and higher SDF-1 and C3 protein secretion from the RPE was found after NaIO3 treatment. A higher number of BMMNCs expressing early ocular markers migrated to conditioned medium from damaged retina. There was also increased expression of early ocular markers in PBMNCs after mobilization. CONCLUSIONS: Damaged RPE secretes cytokines that have been shown to serve as chemoattractants for BM-derived stem cells (BMSCs). Retina-committed stem cells appear to reside in the BM and can be mobilized into the PB by G-CSF and FL. These stem cells may have the potential to serve as an endogenous source for tissue regeneration after RPE damage.
Resumo:
The heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been implicated in wound-healing processes of various tissues. However, it is not known whether HB-EGF may represent a factor implicated in overstimulated wound-healing processes of the retina during proliferative retinopathies. Therefore, we investigated whether human retinal pigment epithelial (RPE) cells, which are crucially involved in proliferative retinopathies, express and respond to HB-EGF. RPE cells express mRNAs for various members of the EGF-related growth factor family, among them for HB-EGF, as well as for the EGF receptors ErbB1, -2, -3, and -4. The gene expression of HB-EGF is stimulated in the presence of transforming and basic fibroblast growth factors and by oxidative stress and is suppressed during chemical hypoxia. Exogenous HB-EGF stimulates proliferation and migration of RPE cells and the gene and protein expression of the vascular endothelial growth factor (VEGF). HB-EGF activates at least three signal transduction pathways in RPE cells including the extracellular signal-regulated kinases (involved in the proliferation-stimulating action of HB-EGF), p38 (mediates the effects on chemotaxis and secretion of VEGF), and the phosphatidylinositol-3 kinase (necessary for the stimulation of chemotaxis). In epiretinal membranes of patients with proliferative retinopathies, HB-EGF immunoreactivity was partially colocalized with the RPE cell marker, cytokeratins; this observation suggests that RPE cell-derived HB-EGF may represent one factor that drives the uncontrolled wound-healing process of the retina. The stimulating effect on the secretion of VEGF may suggest that HB-EGF is also implicated in the pathological angiogenesis of the retina.
Resumo:
PURPOSE: The aim of the present study was to investigate whether bone marrow-derived cells (BMCs) can be induced to express retinal pigment epithelial (RPE) cell markers in vitro and can home to the site of RPE damage after mobilization and express markers of RPE lineage in vivo. METHODS: Adult RPE cells were cocultured with green fluorescence protein (GFP)-labeled stem cell antigen-1 positive (Sca-1(+)) BMCs for 1, 2, and 3 weeks. Cell morphology and expression of RPE-specific markers and markers for other retinal cell types were studied. Using an animal model of sodium iodate (NaIO(3))-induced RPE degeneration, BMCs were mobilized into the peripheral circulation by granulocyte-colony stimulating factor, flt3 ligand, or both. Immunocytochemistry was used to identify and characterize BMCs in the subretinal space in C57BL/6 wild-type (wt) mice and GFP chimeric mice. RESULTS: In vitro, BMCs changed from round to flattened, polygonal cells and expressed cytokeratin, RPE65, and microphthalmia transcription factor (MITF) when cocultured in direct cell-cell contact with RPE. In vivo, BMCs were identified in the subretinal space as Sca-1(+) or c-kit(+) cells. They were also double labeled for GFP and RPE65 or MITF. These cells formed a monolayer on the Bruch membrane in focal areas of RPE damage. CONCLUSIONS: Thus, it appears that BMCs, when mobilized into the peripheral circulation, can home to focal areas of RPE damage and express cell markers of RPE lineage. The use of endogenous BMCs to replace damaged retinal tissue opens new possibilities for cell replacement therapy in ophthalmology.
Resumo:
BACKGROUND: Stem cells with the ability to form clonal floating colonies (spheres) were recently isolated from the neonatal murine spiral ganglion. To further examine the features of inner ear-derived neural stem cells and their derivatives, we investigated the effects of leukemia inhibitory factor (LIF), a neurokine that has been shown to promote self-renewal of other neural stem cells and to affect neural and glial cell differentiation. RESULTS: LIF-treatment led to a dose-dependent increase of the number of neurons and glial cells in cultures of sphere-derived cells. Based on the detection of developmental and progenitor cell markers that are maintained in LIF-treated cultures and the increase of cycling nestin-positive progenitors, we propose that LIF maintains a pool of neural progenitor cells. We further provide evidence that LIF increases the number of nestin-positive progenitor cells directly in a cell cycle-independent fashion, which we interpret as an acceleration of neurogenesis in sphere-derived progenitors. This effect is further enhanced by an anti-apoptotic action of LIF. Finally, LIF and the neurotrophins BDNF and NT3 additively promote survival of stem cell-derived neurons. CONCLUSION: Our results implicate LIF as a powerful tool to control neural differentiation and maintenance of stem cell-derived murine spiral ganglion neuron precursors. This finding could be relevant in cell replacement studies with animal models featuring spiral ganglion neuron degeneration. The additive effect of the combination of LIF and BDNF/NT3 on stem cell-derived neuronal survival is similar to their effect on primary spiral ganglion neurons, which puts forward spiral ganglion-derived neurospheres as an in vitro model system to study aspects of auditory neuron development.
Resumo:
Pretreatment with deuterium oxide (D2O) has been shown to protect mice against lethal effects of X-rays. In contrast, X-irradiation of cultured mammalian cells in D2O-containing medium has previously been reported to result in increased cell killing. Therefore, the effects of preincubation in medium containing 20% D2O on radiosensitivity were tested, using cells of a heat-sensitive cell-cycle mutant (21-Tb) of the murine mastocytoma P 815-X2. The mutant cells proliferate at 33 degrees C and are arrested in G1 phase in a state of reversible proliferative quiescence at 39.5 degrees C. Prior to irradiation with single X-ray doses of 0-10 Gy, the cells were cultured in normal or D2O-containing medium, either for 96 h at 33 degrees C ('proliferating cells'), or for 72 h at 33 degrees C followed by 24 h at 39.5 degrees C ('arrested cells'). After X-irradiation the cells were resuspended in normal medium, and cell survival was determined by the capacity of cells to form colonies in fibrin gels. Preincubation in medium containing 20% D2O resulted in a radioprotective effect on both proliferating and arrested cells, particularly at the higher X-ray doses. This radioprotection was manifested as a decreased slope of the semilogarithmic survival curves, whereas pretreatment with D2O had no significant effect on postirradiation repair as judged from Dq values. These results support the interpretation that the increase in postirradiation survival may be attributed to incorporation of deuterium into cellular metabolites during the period of preincubation.
Resumo:
OBJECTIVE: To describe the use of stem cells (SCs) for regeneration of retinal degenerations. Regenerative medicine intends to provide therapies for severe injuries or chronic diseases where endogenous repair does not sufficiently restore the tissue. Pluripotent SCs, with their capacity to give rise to specialized cells, are the most promising candidates for clinical application. Despite encouraging results, a combination with up-to-date tissue engineering might be critical for ultimate success. DESIGN: The focus is on the use of SCs for regeneration of retinal degenerations. Cell populations include embryonic, neural, and bone marrow-derived SCs, and engineered grafts will also be described. RESULTS: Experimental approaches have successfully replaced damaged photoreceptors and retinal pigment epithelium using endogenous and exogenous SCs. CONCLUSIONS: Stem cells have the potential to significantly impact retinal regeneration. A combination with bioengineering may bear even greater promise. However, ethical and scientific issues have yet to be solved.
Resumo:
The goal of this study was to assess the in vitro differentiation capacity of human bone marrow-derived stem cells (hBMSCs) along retinal lineages. Mononuclear cells (MNC) were isolated from bone marrow (BM) and mobilized peripheral blood (mPB) using Ficoll-Paque density gradient centrifugation, and were sorted by magnetic-activated cell sorting (MACS) for specific stem cell subsets (CD34(+)CD38(+)/CD34(+)CD38(-)). These cells were then co-cultured on human retinal pigment epithelial cells (hRPE) for 7 days. The expression of stem cell, neural and retina-specific markers was examined by immunostaining, and the gene expression profiles were assessed after FACS separation of the co-cultured hBMSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, in vitro functionality of the differentiated cells was analyzed by quantifying phagocytosis of CY5-labeled photoreceptor outer segments (POS). After 7 days of co-culture, hBMSCs adopted an elongated epithelial-like morphology and expressed RPE-specific markers, such as RPE65 and bestrophin. In addition, these differentiated cells were able to phagocytose OS, one of the main characteristics of native RPE cells. Our data demonstrated that human CD34(+)CD38(-) hBMSC may differentiate towards an RPE-like cell type in vitro and could become a new type of autologous donor cell for regenerative therapy in retinal degenerative diseases.
Resumo:
The α9 acetylcholine receptor (α9 AChR) is specifically expressed in hair cells of the inner ear and is believed to be involved in synaptic transmission between efferent nerves and hair cells. Using a recently developed method, we modified a bacterial artificial chromosome containing the mouse α9 AChR gene with a reporter gene encoding green fluorescent protein (GFP) to generate transgenic mice. GFP expression in transgenic mice recapitulated the known temporal and spatial expression of α9 AChR. However, we observed previously unidentified dynamic changes in α9 AChR expression in cochlear and vestibular sensory epithelia during neonatal development. In the cochlea, inner hair cells persistently expressed high levels of α9 AChR in both the apical and middle turns, whereas both outer and inner hair cells displayed dynamic changes of α9 AChR expression in the basal turn. In the utricle, we observed high levels of α9 AChR expression in the striolar region during early neonatal development and high levels of α9 AChR in the extrastriolar region in adult mice. Further, simultaneous visualization of efferent innervation and α9 AChR expression showed that dynamic expression of α9 AChR in developing hair cells was independent of efferent contacts. We propose that α9 AChR expression in developing auditory and vestibular sensory epithelia correlates with maturation of hair cells and is hair-cell autonomous.
Resumo:
Phagocytosis of shed photoreceptor rod outer segments (ROS) by the retinal pigment epithelium (RPE) is essential for retinal function. Here, we demonstrate that this process requires αvβ5 integrin, rather than αvβ3 integrin utilized by systemic macrophages. Although adult rat RPE expressed both αvβ3 and αvβ5 integrins, only αvβ3 was expressed at birth, when the retina is immature and phagocytosis is absent. Expression of αvβ5 was first detected in RPE at PN7 and reached adult levels at PN11, just before onset of phagocytic activity. Interestingly, αvβ5 localized in vivo to the apical plasma membrane, facing the photoreceptors, and to intracellular vesicles, whereas αvβ3 was expressed basolaterally. Using quantitative fluorimaging to assess in vitro uptake of fluorescent particles by human (ARPE-19) and rat (RPE-J) cell lines, αvβ5 function-blocking antibodies were shown to reduce phagocytosis by drastically decreasing (85%) binding of ROS but not of latex beads. In agreement with a role for αvβ5 in phagocytosis, immunofluorescence experiments demonstrated codistribution of αvβ5 integrin with internalized ROS. Control experiments showed that blocking αvβ3 function with antibodies did not inhibit ROS phagocytosis and that αvβ3 did not colocalize with phagocytosed ROS. Taken together, our results indicate that the RPE requires the integrin receptor αvβ5 specifically for the binding of ROS and that phagocytosis involves internalization of a ROS-αvβ5 complex. αvβ5 integrin does not participate in phagocytosis by other phagocytic cells and is the first of the RPE receptors involved in ROS phagocytosis that may be specific for this process.