956 resultados para mechanical wood processing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beta titanium (Ti) alloys are one of the most promising groups of Ti alloys for biomedical applications. This work presents the production, microstructural characterization, and mechanical properties of as-cast Ti-10Mo-xNb (x = 0, 3, 6, 9, 20, and 30) alloys. They were produced via arc melting and characterized by scanning electron microscopy and X-ray diffraction. The density of each alloy was measured by the Archimedes method and the mechanical characterization was carried out by using the Vickers microhardness test and Young`s modulus measurements. The results show a near beta microstructure for niobium (Nb) contents lower or equal to 9 wt% while beta single-phase microstructure was obtained for higher Nb additions. The microhardness values decreased with the increase of Nb content in the alloys. The elastic modulus values of Ti-10Mo-3Nb and Ti-10Mo-20Nb alloys were lower than those of cp Ti and Ti-6Al-4V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceriporiopsis subvermispora is a promising white-rot fungus for biopulping. However, the underlying biochemistry involved in lignin removal and insignificant cellulose degradation by this species is not completely understood. This paper addresses this topic focusing on the involvement of ethanol-soluble extractives and wood transformation products in the biodegradation process. Cultures containing ethanol-extracted or in natura wood chips presented similar levels of extracellular enzymes and degradation of wood components. Fe3+-reducing compounds present in undecayed Pinus taeda were rapidly diminished by fungal degradation. Lignin-degradation products released during biodegradation restored part of the Fe3+-reducing activity. However, Fe3+ reduction was ineffective in presence of 0.5 mM oxalate at pH 4.5. Fungal consumption of Fe3+-reducing compounds and secretion of oxalic acid minimized the significance of Fenton`s reaction in the initial stages of wood biotreatment. This would explain limited polysaccharide degradation by the fungus that also lacks a complete set of hydrolytic enzymes. Scientific relevance of the paper: Ceriporiopsis subvermispora is a white-rot fungus suitable for biopulping processes because it degrades lignin selectively and causes significant structural changes on the wood components during the earlier decay stages. However, the intricate mechanism to explain lignin transformation and insignificant cellulose degradation by this species remains poorly understood. Some recent evidences pointed out for lipid peroxidation reactions as all initiating process explaining lignin degradation. On the other hand, alkylitaconic acids produced by the fungus via transformations of fatty acids occurring in wood showed to prevent polysaccharide degradation in Fenton reactions. In this context, one may conclude that the involvement of native wood substances or their transformation products in the overall wood biodegradation process induced by C subvermispora is still a matter of discussion. While free and esterified fatty acids present in wood extractives may be involved in the biosynthesis of alkylitaconic acids and in lipid peroxidation reactions, some extractives and lignin degradation products can reduce Fe3+, providing Fe2+ species needed to form OH radical via Fenton`s reaction. The present study focuses on this topic by evaluating the relevance of ethanol-soluble extractives and wood transformation products on the biodegradation of P. taeda by C subvermispora. For this, solid-state cultures containing ethanol-extracted and in natura wood chips were evaluated in details for up to 4 weeks. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In biopulping, efficient wood colonization by a selected white-rot fungus depends on previous wood chip decontamination to avoid the growth of primary molds. Although simple to perform in the laboratory, in large-scale biopulping trials, complete wood decontamination is difficult to achieve. Furthermore, the use of fungal growth promoters such as corn steep liquor enhances the risk of culture contamination. This paper evaluates the ability of the biopulping fungus Ceriporiopsis subvermispora to compete with indigenous fungi in cultures of fresh or poorly decontaminated Eucalyptus grandis wood chips. While cultures containing autoclaved wood chips were completely free of contaminants, primary molds grew rapidly when non-autoclaved wood chips were used, resulting in heavily contaminated cultures, regardless of the C. subvermispora inoculum/wood ratio evaluated (5, 50 and 3000 mg mycelium kg(-1) wood). Studies on benomyl-amended medium suggested that the fungi involved competed by consumption of the easily available nutrient sources, with C. subvermispora less successful than the contaminant fungi. The use of acid-washed wood chips decreased the level of such contaminant fungi, but production of manganese peroxidase and xylanases was also decreased under these conditions. Nevertheless, chemithermomechanical pulping of acid-washed samples biotreated under non-aseptic conditions gave similar fibrillation improvements compared to samples subjected to the standard biodegradation process using autoclaved wood chips.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of different culture conditions have been evaluated concerning the extracellular enzyme activities of the white-rot fungus Ceriporiopsis subvermispora growing on Eucalyptus grandis wood. The consequence of the varied fungal pretreatment on a subsequent chemithermomechanical pulping (CTMP) was addressed. In all cultures, manganese peroxidase (MnP) and xylanase were the predominant extracellular enzymes. The biopulping efficiency was evaluated based on the amount of fiber bundles obtained after the first fiberizing step and the fibrillation levels of refined pulps. It was found that the MnP levels in the cultures correlated positively with the biopulping benefits. On the other hand, xylanase and total oxalate levels did not vary significantly. Accordingly, it was not possible to determine whether MnP accomplishes the effect alone or depends on synergic action of other extracellular agents. Pulp strength and fiber size distribution were also evaluated. The average fiber length of CTMP pulps prepared from untreated wood chips was 623 mu m. Analogous values were observed for most of the biopulps; however, significant amounts of shorter fibers were found in the biopulp prepared from wood chips biotreated in cultures supplemented with glucose plus corn-steep liquor. Despite evidence of reduced average fiber length, biopulps prepared from these wood chips presented the highest improvement in tensile indexes (+28% at 23 degrees Schopper-Riegler).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brazil has a well established ethanol production program based on sugarcane. Sugarcane bagasse and straw are the main by-products that may be used as reinforcement in natural fiber composites. Current work evaluated the influence of fiber insertion within a polypropylene (PP) matrix by tensile, TGA and DSC measurements. Thus, the mechanical properties, weight loss, degradation, melting and crystallization temperatures, heat of melting and crystallization and percentage of crystallinity were attained. Fiber insertion in the matrix improved the tensile modulus and changed the thermal stability of composites (intermediary between neat fibers and PP). The incorporation of natural fibers in PP promoted also apparent T(c) and Delta H(c) increases. As a Conclusion, the fibers added to polypropylene increased the nucleating ability, accelerating the crystallization process, improving the mechanical properties and consequently the fiber/matrix interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe(3+)-reductants. Phenolates were the major compounds with Fe(3+)-reducing activity in both fungi and displayed Fe(3+)-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe(3+) and H(2)O(2) (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum-a model brown rot fungus-other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of activated charcoal and ion-exchange resin to cleaN up and concentrate enzymes in extracts from biodegraded wood. Ceriporiopsis subvermispora was used for the biodegradation of Eucalyptus grandis chips in the presence or absence of co-substrates (glucose and corn steep liquor) during 7, 14 and 28 days. Afterwards, the biodegraded chips were extracted with 50 mM sodium acetate buffer (pH 5.5) supplemented with 0.01% Tween 60. High activities of manganese peroxidases (MnPs) were observed in all the extracts, both in the absence (430, 765 and 896 UI kg(-1) respectively) and in the presence of co-substrates (1,013; 2,066 and 2,323 UI kg(-1) respectively). The extracts presented a high ratio between absorbances at 280 and 405 nm, indicating a strong abundance of aromatic compounds derived from lignin over heme-peroxidases. Adsorption into activated charcoal showed to be an adequate strategy to reduce the absorbance at 280 urn in all the extracts. Moreover, it allowed to maximize the capacity of an anion exchange resin bed (DEAE-Sepharose) used to concentrate the MnPs present in the extracts. It was concluded that the use of activated charcoal followed by adsorption into DEAE Sepharose is a strategy that can be used to concentrate MnPs in extracts obtained during the biodegradation of E. grandis by C. subvermispora.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceriporiopsis subvermispora is a white-rot fungus used in biopulping processes and seems to use the fatty acid peroxidation reactions initiated by manganese-peroxidase (MnP) to start lignin degradation. The present work shows that C. subvermispora was able to peroxidize unsaturated fatty acids during wood biotreatment under biopulping conditions. In vitro assays showed that the extent of linoleic acid peroxidation was positively correlated with the level of MnP recovered from the biotreated wood chips. Milled wood was treated in vitro by partially purified MnP and linoleic acid. UV spectroscopy and size exclusion chromatography (SEC) showed that soluble compounds similar to lignin were released from the milled wood. SEC data showed a broad elution profile compatible with low molar mass lignin fractions. MnP-treated milled wood was analyzed by thioacidolysis. The yield of thioacidolysis monomers recovered from guaiacyl and syringyl units decreased by 33% and 20% in MnP-treated milled wood, respectively. This has suggested that lignin depolymerization reactions have occurred during the MnP/linoleic acid treatment. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of Nb(3)Al and Nb(3)Sn superconductors is of great interest for the applied superconductivity area. These intermetallics composites are obtained normally by heat treatment reactions at high temperature. Processes that allow formation of the superconducting phases at lower temperatures (<1000 degrees C), particularly for Nb(3)Al, are of great interest. The present work studies phase formation and stability of Nb(3)Al and Nb(3)Sn superconducting phases using mechanical alloying (high energy ball milling). Our main objective was to form composites near stoichiometry, which could be transformed into the superconducting phases using low-temperature heat treatments. High purity Nb-Sn and Nb-Al powders were mixed to generate the required superconducting phases (Nb-25at.%Sn and Nb-25at.%Al) in an argon atmosphere glove-box. After milling in a Fritsch mill, the samples were compressed in a hydraulic uniaxial press and encapsulated in evacuated quartz tubes for heat treatment. The compressed and heat treated samples were characterized using X-ray diffractometry. Microstructure and chemical analysis were accomplished using scanning electron microscopy and energy dispersive spectrometry. Nb(3)Al XRD peaks were observed after the sintering at 800 degrees C for the sample milled for 30 h. Nb(3)Sn XRD peaks could be observed even before the heat treatment. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, pyrolysis-molecular beam mass spectrometry analysis coupled with principal components analysis and (13)C-labeled tetramethylammonium hydroxide thermochemolysis were used to study lignin oxidation, depolymerization, and demethylation of spruce wood treated by biomimetic oxidative systems. Neat Fenton and chelator-mediated Fenton reaction (CMFR) systems as well as cellulosic enzyme treatments were used to mimic the nonenzymatic process involved in wood brown-rot biodegradation. The results suggest that compared with enzymatic processes, Fenton-based treatment more readily opens the structure of the lignocellulosic matrix, freeing cellulose fibrils from the matrix. The results demonstrate that, under the current treatment conditions, Fenton and CMFR treatment cause limited demethoxylation of lignin in the insoluble wood residue. However, analysis of a water-extractable fraction revealed considerable soluble lignin residue structures that had undergone side chain oxidation as well as demethoxylation upon CMFR treatment. This research has implications for our understanding of nonenzymatic degradation of wood and the diffusion of CMFR agents in the wood cell wall during fungal degradation processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fenton reaction is thought to play an important role in wood degradation by brown-rot fungi. In this context, the effect of oxalic acid and pH on iron reduction by a biomimetic fungal chelator and on the adsorption/desorption of iron to/from wood was investigated. The results presented in this work indicate that at pH 2.0 and 4.5 and in the presence of oxalic acid, the phenolate chelator 2,3-dihydroxybenzoic acid (2,3-DHBA) is capable of reducing ferric iron only when the iron is complexed with oxalate to form Fe mono-oxalate (Fe(C(2)O(4))(+)). Within the pH range tested in this work, this complex formation occurs when the oxalate:Fe(3+) molar ratio is less than 20 (pH 2.0) or less than 10 (pH 4.5). When aqueous ferric iron was passed through a column packed with milled red spruce (Picea rubens) wood equilibrated at pH 2.0 and 4.5. it was observed that ferric iron binds to wood at pH 4.5 but not at pH 2.0, and the bound iron could then be released by application of oxalic acid at pH 4.5. The release of bound iron was dependent on the amount of oxalic acid applied in the column. When the amount of oxalate was at least 20-fold greater than the amount of iron bound to the wood, all bound iron was released. When Fe-oxalate complexes were applied to the milled wood column equilibrated in the pH range of 2-4.5, iron from Fe-oxalate complexes was bound to the wood only when the pH was 3.6 or higher and the oxalate:Fe(3+) molar ratio was less than 10. When 2,3-DHBA was evaluated for its ability to release iron bound to the milled wood, it was found that 2,3-DHBA possessed a greater affinity for ferric iron than the wood as 2,3-DHBA was capable of releasing the ferric iron bound to the wood in the pH range 3.6-5.5. These results further the understanding of the mechanisms employed by brown-rot fungi in wood biodegradation processes. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work discusses the resultant microstructure of laser surface treated galvanised steel and the mechanical properties of adhesively bonded surfaces therein. The surface microstructure obtained at laser intensities between 170 and 1700 MW cm 22 exhibit zinc melting and cavity formation. The wavy surface morphology of the treated surface exhibits an average roughness Ra between 1.0 and 1.5 mu m, and a mean roughness depth R(z) of 8.6 mu m. Atomic force microscopic analyses revealed that the R(z) inside the laser shot cavities increased from 68 to 243 nm when the incident laser intensity was increased from 170 to 1700 MW cm(-2). X-ray fluorescence analyses were used to measure Zn coating thicknesses as a function of process parameters. Both X-ray fluorescence and X-ray diffraction analyses demonstrated that the protective coating remains at the material surface, and the steel structure beneath was not affected by the laser treatment. Tensile tests under peel strength conditions demonstrated that the laser treated adhesively joined samples had resistance strength up to 88 MPa, compared to a maximum of only 23 MPa for the untreated surfaces. The maximum deformation for rupture was also greatly increased from 0.07%, for the original surface, to 0.90% for the laser treated surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of Al(2)O(3) addition and sintering parameters on the mechanical properties and cytotoxicity of tetragonal ZrO(2)-3 mol% Y(2)O(3) ceramics was evaluated. Samples containing 0, 10, 20 and 30 wt.% of Al(2)O(3) particles were prepared by cold uniaxial pressing (80 MPa) and sintered in air at 1500, 1550 and 1600 degrees C for 120 min. The effects of the sintering conditions on the microstructure were analyzed by X-ray diffraction analysis and scanning electron microscopy. Hardness and fracture toughness were determined by the Vickers indentation method and the mechanical resistance by four-point bending tests. As a preliminary biological evaluation, ""in vitro"" cytotoxicity tests were realized to determine the cytotoxic level of the ZrO(2)-Al(2)O(3) composites, using the neutral red uptake method with NCTC clones L929 from the American Type Culture Collection (ATCC) bank. Fully dense ceramic materials were obtained with a hardness ranging between 1340 HV and 1585 HV, depending on the amount of Al(2)O(3) in the ZrO(2) matrix. On the other hand, no significant influence of the Al(2)O(3) addition on fracture toughness was observed, exhibiting values near 8 MPa m(1/2) for all compositions and sintering conditions studied. The non-cytotoxic behavior, the elevated fracture toughness, the good bending strength (sigma(f) = 690 MPa) and the elevated Weibull`s modulus (m = 11) exhibited by the material, show that these ceramic composites are highly suitable biomaterials for dental implant applications. (C) 2008 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the synthesis of Y(2)O(3) stabilized tetragonal zirconia polycrystals (Y-TZP)-alumina (Al(2)O(3)) powder mixture was performed by high-energy ball milling and the sintering behavior of this composite was investigated. In order to understand the phase transformations occurring during ball milling, samples were collected after different milling times, from 1 to 60 h. The milled powders were compacted by cold uniaxial pressing and sintered at 1400 and 1600 degrees C. Both powders and sintered samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry analysis (EDS) and mechanical properties. Fully dense samples were obtained after sintering at 1600 degrees C, while the samples sintered at 1400 degrees C presented a full density for powder mixtures milled for 30 and 60 h. Fracture toughness and Vickers hardnessvalues of the Y-T-ZP/Al(2)O(3) nanocomposite were improved due to dispersed Al(2)O(3) grains and reduced ZrO(2) grain size. Samples sintered at 1400 degrees C, based on powders milled for 60 h, presented high K(IC) and hardness values near to 8.0 Mpan(1/2) and 15 GPa, respectively (C) 2008 Elsevier B.V. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the influence of the glass addition and sintering parameters on the densification and mechanical properties of tetragonal zirconia polycrystals (3Y-TZP) ceramics were evaluated. High-purity tetragonal ZrO2 powder and La2O3-rich glass were used as starting powders. Two compositions based on ZrO2 and containing 5wt.% and 10wt.% of La2O3-rich glass were studied in this work. The starting powders were mixed/milled by planetary milling, dried at 90 degrees C for 24 h, sieved through a 60 mesh screen and uniaxially cold pressed under 80 MPa. The samples were sintered in air at 1200 degrees C, 1300 degrees C, 1400 degrees C for 60 min and at 1450 degrees C for 120 min, with heating and cooling rates of 10 degrees C/min. Sintered samples were characterized by relative density, X-ray diffraction (XRD) and scanningelectron microscopy (SEM). Hardness and fracture toughness were obtained by Vickers indentation method. Dense sintered samples were obtained for all conditions. Furthermore, only tetragonal-ZrO2 was identified as crystalline phase in sintered samples, independently of the conditions studied. Samples sintered at 1300 degrees C for 60 min presented the optimal mechanical properties with hardness and fracture toughness values near to 12 GPa and 8.5 MPa m(1/2) respectively. (c) 2007 Elsevier B.V, All rights reserved.